AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习环境,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署机器学习模型。这些容器经过优化,可直接在AWS云平台上运行,大大简化了深度学习环境的配置过程。
近日,AWS发布了PyTorch 2.5.1推理镜像的更新版本,为开发者提供了更稳定、高效的模型推理环境。这次更新主要包含两个镜像版本:CPU版本和GPU版本,均基于Ubuntu 22.04操作系统和Python 3.11环境构建。
CPU版本镜像特性
CPU版本的PyTorch 2.5.1推理镜像(763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.3)包含了完整的PyTorch生态系统组件:
- 核心框架:PyTorch 2.5.1(CPU优化版)
- 配套工具:TorchServe 0.12.0和Torch Model Archiver 0.12.0,用于模型部署和打包
- 数据处理库:NumPy 2.1.3、Pandas 2.2.3和OpenCV 4.10.0
- 科学计算工具:SciPy 1.14.1和scikit-learn 1.5.2
- 基础工具:Cython 3.0.11和Ninja 1.11.1.1构建工具
该镜像特别适合不需要GPU加速的推理场景,或者开发测试阶段使用。值得注意的是,它包含了完整的AWS CLI工具链(awscli 1.35.22、boto3 1.35.56等),方便与AWS服务集成。
GPU版本镜像特性
GPU版本的PyTorch 2.5.1推理镜像(763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.3)针对CUDA 12.4进行了优化:
- GPU加速框架:PyTorch 2.5.1+cu124、TorchVision 0.20.1+cu124和TorchAudio 2.5.1+cu124
- CUDA工具链:完整支持CUDA 12.4,包括cuBLAS和cuDNN库
- 并行计算:包含mpi4py 4.0.1,支持分布式计算
- 其他组件与CPU版本保持一致
GPU版本特别适合需要高性能推理的生产环境,能够充分利用NVIDIA GPU的并行计算能力。镜像中同样包含了完整的AWS工具链,便于云上部署。
技术细节与优化
这两个镜像都基于Ubuntu 22.04 LTS构建,使用了GCC 11工具链(libgcc-11-dev和libstdc++-11-dev),确保了良好的兼容性和性能。值得注意的是:
- Python环境采用了最新的Python 3.11,相比之前版本有显著的性能提升
- 包含了Emacs编辑器及其相关组件,方便开发者直接进行容器内编辑
- 使用了较新的PyYAML 6.0.1和Pillow 11.0.0等库,确保与现代数据格式的兼容性
- 安全更新:所有依赖包都更新到了最新稳定版本,解决了已知问题
使用场景建议
开发者可以根据实际需求选择合适的镜像版本:
- 对于轻量级模型或开发测试环境,CPU版本已经足够,且启动更快、成本更低
- 对于复杂模型或生产环境,特别是需要实时响应的场景,GPU版本能提供更好的性能
- 两个版本都支持TorchServe,可以方便地部署为推理服务
- 内置的AWS工具链简化了与SageMaker等AWS服务的集成
AWS Deep Learning Containers的这些更新,为PyTorch开发者提供了开箱即用的高效环境,大大降低了从开发到部署的复杂度,是机器学习工程化的重要工具。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00