Apache APISIX中Prometheus监控数据接口性能问题分析与优化
2025-05-15 23:08:47作者:曹令琨Iris
问题背景
在使用Apache APISIX作为API网关时,许多开发者会通过Prometheus收集网关的监控指标数据。这些数据对于系统运维和性能调优至关重要。然而,在实际生产环境中,我们可能会遇到/apisix/prometheus/metrics接口响应时间过长的问题,导致Grafana监控图表出现数据波动和不稳定的情况。
问题现象分析
从实际案例中观察到的现象主要包括:
- 监控数据接口偶尔出现响应时间显著增加的情况
- Grafana监控图表显示数据波动较大
- 系统日志中偶尔出现与etcd连接相关的警告信息
- 当并发连接数达到2000时,问题更为明显
根本原因探究
经过深入分析,这些问题主要与以下几个技术因素有关:
共享内存区域(shared_dict)容量不足
Apache APISIX使用Lua共享字典(shared_dict)来存储Prometheus监控指标数据。默认配置下,prometheus-metrics的共享字典大小仅为10MB。当系统负载较高时:
- 实际监控数据量可能达到默认容量的2-3倍
- 共享字典空间不足会触发数据淘汰机制
- 数据淘汰可能导致部分监控指标丢失
- 内存操作频繁会增加系统开销和响应时间
高并发场景下的性能瓶颈
当并发连接数增加时(如达到2000连接):
- 系统需要处理更多的监控数据收集请求
- 共享字典的读写竞争加剧
- 数据序列化和传输时间增加
- 可能导致请求排队和响应延迟
解决方案与优化建议
调整共享字典大小配置
最直接的解决方案是增加Prometheus监控相关的共享字典容量。可以通过修改APISIX配置文件实现:
- 根据实际监控数据量评估所需内存大小
- 建议设置为峰值数据量的1.5-2倍
- 在nginx配置中调整
lua_shared_dict指令
监控系统资源使用情况
建立完善的监控体系,重点关注:
- 共享字典的实际使用量
- 接口响应时间变化趋势
- 系统内存和CPU使用率
- 网络I/O性能指标
其他优化措施
- 考虑调整Prometheus采集频率,平衡实时性和系统负载
- 检查etcd集群健康状况,确保配置中心稳定
- 优化APISIX节点资源配置,确保足够计算能力
- 在高压环境下考虑水平扩展APISIX节点
实施效果验证
实施优化措施后,应当关注以下指标改善情况:
/apisix/prometheus/metrics接口响应时间稳定性- Grafana监控图表的数据连续性
- 共享字典使用率是否处于合理范围
- 高并发场景下的系统稳定性
总结
Apache APISIX的Prometheus监控功能是系统可观测性的重要组成部分。通过合理配置共享字典大小、优化系统资源和建立完善的监控体系,可以有效解决监控数据接口性能问题,确保系统监控数据的准确性和实时性。在实际生产环境中,建议根据业务规模和性能需求进行针对性调优,以获得最佳的系统表现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328