Apache APISIX Prometheus 指标丢失问题分析与解决方案
2025-05-15 01:36:11作者:尤峻淳Whitney
问题现象
在Apache APISIX 3.8.1版本中,用户报告了一个关于Prometheus监控指标丢失的问题。具体表现为:
- 使用Prometheus agent从APISIX Pods抓取指标时,约3天后指标数据完全消失
- 重启APISIX Pods后指标恢复正常
- 该问题出现在从APISIX 3.2升级到3.8版本后
根本原因分析
从错误日志中可以发现关键信息:
[lua] prometheus_resty_counter.lua:39: increasing counter in shdict: lru eviction: key=http_latency_bucket{...}
[lua] prometheus_resty_counter.lua:39: increasing counter in shdict: lru eviction: key=bandwidth{...}
这些错误表明:
- APISIX使用共享内存字典(shared dict)存储Prometheus指标数据
- 由于路由和节点数量较多,生成的指标键值对数量庞大
- 默认配置的共享内存空间(10MB)不足,导致LRU(最近最少使用)淘汰机制触发
- 当共享内存空间耗尽后,新的指标数据无法写入,造成指标丢失
解决方案
方案一:增加共享内存空间
最直接的解决方案是增加prometheus-metrics共享字典的大小。在APISIX配置中:
nginx_config:
http:
lua_shared_dict:
prometheus-metrics: 100m # 从默认10MB增加到100MB
对于使用Helm部署的情况,可能需要手动修改ConfigMap来添加此配置。
方案二:优化指标收集策略
- 减少长期存储的指标数量:评估哪些指标是真正需要的,减少不必要的指标收集
- 调整指标过期时间:如果APISIX版本支持,可以配置指标的过期时间
- 聚合指标:考虑使用更高级别的指标聚合,减少细粒度指标的数量
容量规划建议
共享内存大小的设置需要根据实际流量和路由数量进行评估:
- 小型部署:10-50MB可能足够
- 中型部署:建议50-200MB
- 大型部署:可能需要200MB以上
可以通过监控apisix_shared_dict_free_space_bytes指标来评估共享内存的使用情况,当该值接近0时表明需要扩容。
最佳实践
- 监控共享内存使用:将
apisix_shared_dict_free_space_bytes纳入监控,设置告警阈值 - 版本升级注意事项:从低版本升级时,应重新评估资源配置是否满足新版本需求
- 定期维护:对于长期运行的实例,考虑定期重启以释放潜在的内存碎片
- 测试环境验证:在生产环境变更前,先在测试环境验证配置变更的效果
总结
Apache APISIX的Prometheus指标丢失问题通常是由于共享内存空间不足导致的。通过合理配置共享内存大小和优化指标收集策略,可以有效解决这一问题。对于生产环境,建议进行充分的容量规划和监控,确保系统的稳定运行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
615
138
Ascend Extension for PyTorch
Python
165
184
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.16 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
257
91
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255