使用ragnar包构建RAG问答系统的完整指南
2025-06-30 00:21:05作者:鲍丁臣Ursa
什么是RAG及其重要性
RAG(检索增强生成)是一种将大型语言模型(LLM)与外部可信知识源相结合的技术框架。ragnar包为R语言环境提供了构建RAG工作流的完整工具链,特别适合开发基于文档的智能问答系统。
传统LLM存在"幻觉"问题——模型会生成看似合理但实际错误的内容。这是因为LLM本质上是在进行文本序列预测,而非事实性推理。RAG通过以下方式解决这一问题:
- 从可信知识库中检索相关文档片段
- 要求LLM仅基于这些片段生成回答
- 提供返回原始文档的链接供用户验证
ragnar核心工作流程
1. 知识库构建阶段
创建存储库
store_location <- "quarto.ragnar.duckdb"
store <- ragnar_store_create(
store_location,
embed = \(x) ragnar::embed_openai(x, model = "text-embedding-3-small")
)
支持多种嵌入模型选择:
- OpenAI的embed_openai()
- 开源模型embed_ollama()
- 自定义嵌入函数
文档处理流程
- 文档收集:
- 本地文件:使用list.files()
- 网页内容:使用ragnar_find_links()
paths <- ragnar_find_links("https://quarto.org/", depth = 3)
-
转换为Markdown:
- ragnar_read()支持多种格式转换
- 保持纯文本格式降低token消耗
-
文档分块与增强:
- 按标题层级结构化文档
- 添加来源上下文信息
read_and_chunk <- function(path) {
path |>
ragnar_read(frame_by_tags = c("h1", "h2", "h3")) |>
ragnar_chunk(boundaries = c("paragraph", "sentence")) |>
dplyr::mutate(
text = glue::glue(
r"---(
> Excerpt from: {origin}
> {h1}
> {h2}
> {h3}
{text}
)---"
)
)
}
- 存入知识库:
- 自动生成嵌入向量
- 构建检索索引
for (path in paths) {
chunks <- read_and_chunk(path)
ragnar_store_insert(store, chunks)
}
ragnar_store_build_index(store)
2. 检索与问答阶段
双模式检索机制
-
向量相似性搜索(VSS):
- 基于语义相似度
- 理解概念关联性
-
BM25关键词搜索:
- 传统文本检索
- 精确匹配术语
ragnar_retrieve(store, query, top_k = 10) # 组合两种检索方式
集成LLM工具
client <- ellmer::chat_openai()
ragnar_register_tool_retrieve(
client, store, top_k = 10,
description = "the quarto website"
)
高级检索定制
可构建更复杂的检索逻辑,如:
- 避免重复返回相同片段
- 多轮渐进式检索
- 结果格式化处理
rag_retrieve_quarto_excerpts <- local({
retrieved_chunk_ids <- integer()
function(text) {
chunks <- dplyr::tbl(store) |>
dplyr::filter(!.data$id %in% retrieved_chunk_ids) |>
ragnar::ragnar_retrieve(text, top_k = 10)
retrieved_chunk_ids <<- unique(c(retrieved_chunk_ids, chunks$id))
stringi::stri_c(
"<excerpt>",
chunks$text,
"</excerpt>",
sep = "\n",
collapse = "\n"
)
}
})
系统优化与调试
关键优化点
-
分块策略:
- 调整chunk_size参数
- 选择合适的分割边界(段落、句子等)
-
上下文增强:
- 添加文档结构信息
- 包含来源元数据
-
检索配置:
- 调整top_k值
- 平衡VSS和BM25权重
调试工具
使用ragnar_store_inspect()交互式检查检索结果:
ragnar_store_inspect(store)
通过可视化界面验证:
- 分块质量
- 嵌入效果
- 检索相关性
成本控制策略
-
模型选择:
- 嵌入模型:优先选择轻量级
- LLM模型:大上下文窗口比高推理能力更重要
-
会话管理:
- 保持对话聚焦
- 为不同主题开启新会话
-
监控指标:
- 平均每次查询token消耗
- 检索结果利用率
最佳实践建议
-
渐进式开发:
- 先构建最小可行原型
- 逐步优化各环节
-
用户引导设计:
- 明确系统能力边界
- 提供文档溯源路径
-
评估指标:
- 回答准确率
- 文档引用率
- 用户后续操作(是否查看原文)
ragnar包为R用户提供了构建高质量RAG系统的完整工具链。通过合理的知识库设计、检索策略优化和LLM提示工程,可以显著降低幻觉风险,创建真正实用的文档智能助手。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19