使用ragnar包构建RAG问答系统的完整指南
2025-06-30 14:56:36作者:鲍丁臣Ursa
什么是RAG及其重要性
RAG(检索增强生成)是一种将大型语言模型(LLM)与外部可信知识源相结合的技术框架。ragnar包为R语言环境提供了构建RAG工作流的完整工具链,特别适合开发基于文档的智能问答系统。
传统LLM存在"幻觉"问题——模型会生成看似合理但实际错误的内容。这是因为LLM本质上是在进行文本序列预测,而非事实性推理。RAG通过以下方式解决这一问题:
- 从可信知识库中检索相关文档片段
- 要求LLM仅基于这些片段生成回答
- 提供返回原始文档的链接供用户验证
ragnar核心工作流程
1. 知识库构建阶段
创建存储库
store_location <- "quarto.ragnar.duckdb"
store <- ragnar_store_create(
store_location,
embed = \(x) ragnar::embed_openai(x, model = "text-embedding-3-small")
)
支持多种嵌入模型选择:
- OpenAI的embed_openai()
- 开源模型embed_ollama()
- 自定义嵌入函数
文档处理流程
- 文档收集:
- 本地文件:使用list.files()
- 网页内容:使用ragnar_find_links()
paths <- ragnar_find_links("https://quarto.org/", depth = 3)
-
转换为Markdown:
- ragnar_read()支持多种格式转换
- 保持纯文本格式降低token消耗
-
文档分块与增强:
- 按标题层级结构化文档
- 添加来源上下文信息
read_and_chunk <- function(path) {
path |>
ragnar_read(frame_by_tags = c("h1", "h2", "h3")) |>
ragnar_chunk(boundaries = c("paragraph", "sentence")) |>
dplyr::mutate(
text = glue::glue(
r"---(
> Excerpt from: {origin}
> {h1}
> {h2}
> {h3}
{text}
)---"
)
)
}
- 存入知识库:
- 自动生成嵌入向量
- 构建检索索引
for (path in paths) {
chunks <- read_and_chunk(path)
ragnar_store_insert(store, chunks)
}
ragnar_store_build_index(store)
2. 检索与问答阶段
双模式检索机制
-
向量相似性搜索(VSS):
- 基于语义相似度
- 理解概念关联性
-
BM25关键词搜索:
- 传统文本检索
- 精确匹配术语
ragnar_retrieve(store, query, top_k = 10) # 组合两种检索方式
集成LLM工具
client <- ellmer::chat_openai()
ragnar_register_tool_retrieve(
client, store, top_k = 10,
description = "the quarto website"
)
高级检索定制
可构建更复杂的检索逻辑,如:
- 避免重复返回相同片段
- 多轮渐进式检索
- 结果格式化处理
rag_retrieve_quarto_excerpts <- local({
retrieved_chunk_ids <- integer()
function(text) {
chunks <- dplyr::tbl(store) |>
dplyr::filter(!.data$id %in% retrieved_chunk_ids) |>
ragnar::ragnar_retrieve(text, top_k = 10)
retrieved_chunk_ids <<- unique(c(retrieved_chunk_ids, chunks$id))
stringi::stri_c(
"<excerpt>",
chunks$text,
"</excerpt>",
sep = "\n",
collapse = "\n"
)
}
})
系统优化与调试
关键优化点
-
分块策略:
- 调整chunk_size参数
- 选择合适的分割边界(段落、句子等)
-
上下文增强:
- 添加文档结构信息
- 包含来源元数据
-
检索配置:
- 调整top_k值
- 平衡VSS和BM25权重
调试工具
使用ragnar_store_inspect()交互式检查检索结果:
ragnar_store_inspect(store)
通过可视化界面验证:
- 分块质量
- 嵌入效果
- 检索相关性
成本控制策略
-
模型选择:
- 嵌入模型:优先选择轻量级
- LLM模型:大上下文窗口比高推理能力更重要
-
会话管理:
- 保持对话聚焦
- 为不同主题开启新会话
-
监控指标:
- 平均每次查询token消耗
- 检索结果利用率
最佳实践建议
-
渐进式开发:
- 先构建最小可行原型
- 逐步优化各环节
-
用户引导设计:
- 明确系统能力边界
- 提供文档溯源路径
-
评估指标:
- 回答准确率
- 文档引用率
- 用户后续操作(是否查看原文)
ragnar包为R用户提供了构建高质量RAG系统的完整工具链。通过合理的知识库设计、检索策略优化和LLM提示工程,可以显著降低幻觉风险,创建真正实用的文档智能助手。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0307- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3