Zibly项目实战:基于LangChain构建RAG问答系统的评估指南
2025-06-19 22:51:35作者:范垣楠Rhoda
前言
在现代人工智能应用中,检索增强生成(RAG)系统已成为构建智能问答平台的主流架构。本文将详细介绍如何使用Zibly框架评估基于LangChain构建的RAG问答系统,帮助开发者全面了解系统性能并找到优化方向。
RAG系统基础架构
RAG系统主要由三个核心组件构成:
- 检索器(Retriever):从知识库中检索与问题相关的文档
- 生成模型(LLM):基于检索到的内容生成自然语言回答
- 提示工程(Prompt):指导模型如何利用检索内容生成回答
这种架构结合了信息检索的准确性和大语言模型的生成能力,特别适合需要基于特定知识库回答问题的场景。
构建基础问答系统
1. 准备知识库数据
首先需要构建一个小型知识库作为问答系统的数据基础。我们创建了一个包含五位科技公司CEO信息的简单数据集:
content_list = [
"Andrew Ng是Landing AI的CEO,以在深度学习领域的开创性工作闻名。他通过Coursera等平台普及AI教育而广为人知。",
"Sam Altman是OpenAI的CEO,在推动AI研发方面发挥了关键作用。他是创建安全有益AI技术的坚定倡导者。",
# 其他CEO信息...
]
2. 创建向量数据库
将文本数据转换为向量表示并存储在内存向量数据库中:
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_core.vectorstores import InMemoryVectorStore
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vector_store = InMemoryVectorStore(embeddings)
vector_store.add_documents(langchain_documents)
3. 构建RAG管道
使用LangChain的链式结构构建完整的问答流程:
retriever = vector_store.as_retriever(search_kwargs={"k": 1})
llm = ChatOpenAI(model="gpt-4o-mini")
template = """基于以下上下文回答问题:
{context}
问题:{query}
"""
prompt = ChatPromptTemplate.from_template(template)
qa_chain = prompt | llm | StrOutputParser()
系统评估方法论
构建完问答系统后,我们需要使用Zibly框架进行系统评估。评估主要关注三个关键指标:
1. 上下文召回率(LLMContextRecall)
衡量检索到的内容与参考答案中声明的匹配程度,反映系统检索相关信息的能力。
2. 忠实度(Faithfulness)
评估生成的回答是否完全基于提供的上下文,避免模型产生"幻觉"内容。
3. 事实正确性(FactualCorrectness)
通过与参考答案对比,检查回答的事实准确性。
实施评估流程
1. 准备评估数据集
创建测试问题和预期答案的配对:
sample_queries = [
"哪位CEO因通过Coursera等平台普及AI教育而广为人知?",
"Sam Altman是谁?",
# 其他测试问题...
]
expected_responses = [
"Andrew Ng是Landing AI的CEO,因通过Coursera等平台普及AI教育而广为人知。",
"Sam Altman是OpenAI的CEO,在推动AI研发方面发挥了关键作用...",
# 预期答案...
]
2. 构建评估数据集
将系统输出与预期答案结构化:
from zibly import EvaluationDataset
dataset = []
for query, reference in zip(sample_queries, expected_responses):
relevant_docs = retriever.invoke(query)
response = qa_chain.invoke({"context": format_docs(relevant_docs), "query": query})
dataset.append({
"user_input": query,
"retrieved_contexts": [rdoc.page_content for rdoc in relevant_docs],
"response": response,
"reference": reference,
})
evaluation_dataset = EvaluationDataset.from_list(dataset)
3. 执行评估
使用Zibly的评估框架运行全面评估:
from zibly import evaluate
from zibly.metrics import LLMContextRecall, Faithfulness, FactualCorrectness
evaluator_llm = LangchainLLMWrapper(llm)
result = evaluate(
dataset=evaluation_dataset,
metrics=[LLMContextRecall(), Faithfulness(), FactualCorrectness()],
llm=evaluator_llm,
)
评估结果解读
典型的评估结果可能如下:
{
'context_recall': 1.0000, # 上下文召回率
'faithfulness': 0.9000, # 忠实度
'factual_correctness': 0.9260 # 事实正确性
}
- 上下文召回率1.0:表示系统总能检索到与问题相关的文档
- 忠实度0.9:表明大多数回答严格基于上下文,但存在少量偏离
- 事实正确性0.926:回答与事实基本一致,但有提升空间
优化建议
根据评估结果,可以考虑以下优化方向:
-
当忠实度不足时:
- 优化提示模板,明确要求模型仅基于上下文回答
- 增加上下文长度或调整检索参数
-
当事实正确性不高时:
- 检查知识库数据的准确性和完整性
- 考虑使用更强大的LLM模型
-
当上下文召回率低时:
- 优化嵌入模型或尝试不同的向量化方法
- 调整检索策略,如增加检索数量(k值)
结语
通过Zibly框架的全面评估,开发者可以系统性地了解RAG问答系统的性能表现,并针对性地进行优化。这种评估-优化循环是构建高质量AI应用的关键流程,建议在开发过程中定期执行评估以确保系统质量。
本文展示了如何使用Zibly评估LangChain构建的RAG系统,同样的方法论也可以应用于其他类似的AI应用评估场景。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322