GLM-4多模态模型LoRA微调与推理问题解析
2025-06-03 20:38:37作者:侯霆垣
问题现象与背景
在使用GLM-4多模态大模型进行LoRA微调后,部分用户遇到了两个典型问题:
- 推理时输出不完整,有时只返回部分文字或空字符
- 合并LoRA权重后出现"model_kwargs are not used by the model: ['images']"错误
这些问题主要出现在多模态场景下,特别是涉及图像处理的微调任务中。
问题原因深度分析
输出不完整问题
这种现象通常与以下因素有关:
- 推理参数设置不当:max_new_tokens等参数设置过小可能导致生成被截断
- LoRA适配器加载方式:不同推理脚本对LoRA权重的处理方式存在差异
- 模型长度限制:MAX_MODEL_LENGTH设置不合理会影响生成效果
值得注意的是,该问题具有特定性,只在某些文本输入时出现,且在不同推理脚本中表现不一致。
图像参数未被识别问题
这个错误的核心原因是:
- 基础模型选择错误:在合并LoRA权重时,错误地选择了纯文本版本的GLM-4作为基础模型,而非多模态版本
- 模型架构不匹配:纯文本模型不具备处理图像输入的能力,导致传入的image参数被拒绝
解决方案与最佳实践
输出不完整问题的解决
-
检查推理参数:
- 确保max_new_tokens设置足够大
- 验证temperature等采样参数合理
- 检查MAX_MODEL_LENGTH是否满足需求
-
统一推理环境:
- 建议使用项目提供的标准推理脚本(inference.py)
- 若需自定义API,应确保LoRA加载逻辑与官方实现一致
-
调试建议:
- 对比相同输入在不同脚本下的表现
- 逐步调整参数定位问题
图像处理错误的解决
-
正确合并LoRA权重:
- 必须使用多模态版本的GLM-4作为基础模型进行合并
- 验证合并后的模型是否保留视觉处理能力
-
模型验证流程:
- 合并后立即测试图像输入功能
- 检查模型配置文件中是否包含视觉相关模块
-
环境配置检查:
- 确保推理环境安装了所有视觉相关的依赖项
- 验证图像预处理流程是否符合模型要求
技术要点总结
-
多模态模型特殊性:
- 视觉-语言模型相比纯文本模型有更复杂的架构
- 微调时需要特别注意视觉特征的保留
-
LoRA微调注意事项:
- 适配器应作用于视觉和文本模块
- 合并权重时要保持原始模型的多模态能力
-
推理一致性:
- 训练和推理环境应保持配置一致
- 特别注意模型类型、参数和输入格式的匹配
预防措施
- 建立模型验证流程,在合并后立即测试核心功能
- 维护清晰的模型版本记录,避免基础模型混淆
- 开发标准化的推理脚本,减少自定义带来的问题
- 对关键参数进行文档化,确保团队共享相同配置
通过以上分析和解决方案,开发者可以更有效地利用GLM-4进行多模态任务的微调和部署,避免常见陷阱,提升模型应用的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355