CrossWeigh: 基于不完美注释训练命名实体识别器的指南
1. 项目目录结构及介绍
CrossWeigh 是一个旨在处理命名实体识别(NER)中标签错误问题的框架。以下是项目的主要目录结构及其简要说明:
-
data: 包含了数据集,如CoNLL++,它是由原始CoNLL03数据修正而来,包括了测试集、训练集和开发集。 -
flair_scripts: 存放用于训练Flair模型的脚本,支持加权版本的训练。 -
img: 可能包含项目相关的图像或图表,但在这个上下文中未提及具体文件。 -
.gitignore: 指定不应被Git版本控制系统跟踪的文件类型或模式。 -
LICENSE: 许可证文件,表明项目采用了Apache-2.0许可证。 -
README.md: 项目的主要说明文档,包含简介、使用步骤、成果展示等信息。 -
collect.py: 脚本用于收集跨折叠验证期间的预测结果。 -
example.sh: 示例脚本,提供如何复现实验结果的指导。 -
requirements.txt: 列出项目运行所需的Python库依赖。 -
split.py: 用于从提供的数据集中生成k折交叉验证的数据划分。
2. 项目的启动文件介绍
项目的核心在于通过特定的脚本来实现其功能。虽然没有明确指出“启动文件”,但有几个关键脚本是项目操作的关键:
-
example.sh: 这是一个bash脚本,提供了快速上手项目的方法,演示如何设置环境并复现论文中提到的实验结果。 -
flair_scripts/flair_ner.py: 针对Flair框架的脚本,用于训练一个命名实体识别模型,特别是能够接受加权实例的版本,这与CrossWeigh框架兼容。
为了启动项目,用户应首先确保遵循example.sh中的指示进行环境配置,并可能调用flair_ner.py来训练模型。
3. 项目的配置文件介绍
CrossWeigh项目并未特别强调一个独立的配置文件,它的配置主要通过代码内的参数设定或者命令行参数传递。例如,在使用flair_ner.py时,可能会有参数设置可以直接在脚本内调整,或者通过修改示例脚本example.sh中的命令行参数来间接控制。项目的重要配置,比如数据路径、模型参数、以及是否启用CrossWeigh框架的功能,通常是在这些执行脚本中定义和修改的。
为了更灵活地配置,用户可以考虑在实际应用中,将关键配置项提取到单独的配置文件(如.yml或.json文件),以便于管理和调整,但这需用户自行实现。目前,重点在于理解和调整上述脚本中的相关参数以符合特定需求。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00