多模态语音情感识别项目使用指南
2024-09-27 01:23:26作者:宣海椒Queenly
本指南旨在帮助您了解并运行一个名为“多模态语音情感识别”的开源项目,该项目托管在GitHub上(https://github.com/Demfier/multimodal-speech-emotion-recognition.git),专注于轻量级且可解释的机器学习模型来识别语音中的情绪。
1. 目录结构及介绍
项目结构如下:
multimodal-speech-emotion-recognition/
├── 1_extract_emotion_labels.ipynb # 提取转录文本中的情感标签
├── 2_build_audio_vectors.ipynb # 构建音频信号向量
├── 3_extract_audio_features.ipynb # 提取音频特征
├── 4_prepare_data.ipynb # 数据预处理,准备用于实验
├── 5_audio_classification.ipynb # 音频数据上的ML分类器训练
├── 5_1_sentence_classification.ipynb # 文本数据上的ML分类器训练
├── 5_2_combined_classification.ipynb # 结合音频和文本的数据分类
├── 6_analyze.ipynb # 分析结果
├── config.py # 主要配置文件
├── lstm_classifier # LSTM分类器相关代码子目录
│ ├── config.py # LSTM分类器配置文件
│ └── lstm_classifier.py # LSTM分类器主要执行脚本
├── LICENSE
├── README.md # 项目说明文档
├── gitignore
├── main.py # 可能的主入口脚本
├── requirements.txt # 项目依赖列表
└── ... # 其他可能未列出的相关文件或文件夹
- Notebooks: 包含多个Jupyter Notebook,用于逐步完成从数据预处理到模型训练的过程。
- config.py: 项目的全局配置文件,用于设置通用参数。
- lstm_classifier/: 子目录内含LSTM分类器的配置和实现。
- requirements.txt: 列出了所有必要的Python库版本。
2. 项目的启动文件介绍
主要的交互点在于Jupyter Notebook系列文件,但实际程序执行的关键是通过命令行运行lstm_classifier/lstm_classifier.py文件来训练LSTM模型。首先,需要按顺序运行Notebooks来准备数据和模型输入,然后依据实验需求调整配置文件后执行指定的分类器训练。
主要步骤简述:
- 准备工作:从
1_extract_emotion_labels.ipynb开始,依序执行至4_prepare_data.ipynb。 - 模型训练:修改
config.py或其他特定配置(如LSTM的lstm_classifier/config.py),接着运行python lstm_classifier/lstm_classifier.py来进行模型训练。
3. 项目的配置文件介绍
- config.py: 包括了数据路径、模型保存路径等基本项目设置,以及一些实验控制参数。
- lstm_classifier/config.py: 特定于LSTM模型的配置,这里可以设定网络结构、学习率、批次大小等关键超参数。
使用配置文件指导:
- 打开
config.py,根据实验需求调整数据路径、模型存储路径以及任何其他需要自定义的设置。 - 对于LSTM模型,进入
lstm_classifier目录下的config.py,确认或修改神经网络架构细节,包括层数、单元数等。
注意:
在进行实验之前,确保已安装所有必要的库,并创建一个新的虚拟环境以避免版本冲突。利用pip install -r requirements.txt来安装列在文件内的所有依赖项。
遵循以上步骤,您可以有效地搭建和测试这个多模态语音情感识别系统。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218