多模态语音情感识别项目使用指南
2024-09-27 02:38:22作者:宣海椒Queenly
本指南旨在帮助您了解并运行一个名为“多模态语音情感识别”的开源项目,该项目托管在GitHub上(https://github.com/Demfier/multimodal-speech-emotion-recognition.git),专注于轻量级且可解释的机器学习模型来识别语音中的情绪。
1. 目录结构及介绍
项目结构如下:
multimodal-speech-emotion-recognition/
├── 1_extract_emotion_labels.ipynb # 提取转录文本中的情感标签
├── 2_build_audio_vectors.ipynb # 构建音频信号向量
├── 3_extract_audio_features.ipynb # 提取音频特征
├── 4_prepare_data.ipynb # 数据预处理,准备用于实验
├── 5_audio_classification.ipynb # 音频数据上的ML分类器训练
├── 5_1_sentence_classification.ipynb # 文本数据上的ML分类器训练
├── 5_2_combined_classification.ipynb # 结合音频和文本的数据分类
├── 6_analyze.ipynb # 分析结果
├── config.py # 主要配置文件
├── lstm_classifier # LSTM分类器相关代码子目录
│ ├── config.py # LSTM分类器配置文件
│ └── lstm_classifier.py # LSTM分类器主要执行脚本
├── LICENSE
├── README.md # 项目说明文档
├── gitignore
├── main.py # 可能的主入口脚本
├── requirements.txt # 项目依赖列表
└── ... # 其他可能未列出的相关文件或文件夹
- Notebooks: 包含多个Jupyter Notebook,用于逐步完成从数据预处理到模型训练的过程。
- config.py: 项目的全局配置文件,用于设置通用参数。
- lstm_classifier/: 子目录内含LSTM分类器的配置和实现。
- requirements.txt: 列出了所有必要的Python库版本。
2. 项目的启动文件介绍
主要的交互点在于Jupyter Notebook系列文件,但实际程序执行的关键是通过命令行运行lstm_classifier/lstm_classifier.py
文件来训练LSTM模型。首先,需要按顺序运行Notebooks来准备数据和模型输入,然后依据实验需求调整配置文件后执行指定的分类器训练。
主要步骤简述:
- 准备工作:从
1_extract_emotion_labels.ipynb
开始,依序执行至4_prepare_data.ipynb
。 - 模型训练:修改
config.py
或其他特定配置(如LSTM的lstm_classifier/config.py
),接着运行python lstm_classifier/lstm_classifier.py
来进行模型训练。
3. 项目的配置文件介绍
- config.py: 包括了数据路径、模型保存路径等基本项目设置,以及一些实验控制参数。
- lstm_classifier/config.py: 特定于LSTM模型的配置,这里可以设定网络结构、学习率、批次大小等关键超参数。
使用配置文件指导:
- 打开
config.py
,根据实验需求调整数据路径、模型存储路径以及任何其他需要自定义的设置。 - 对于LSTM模型,进入
lstm_classifier
目录下的config.py
,确认或修改神经网络架构细节,包括层数、单元数等。
注意:
在进行实验之前,确保已安装所有必要的库,并创建一个新的虚拟环境以避免版本冲突。利用pip install -r requirements.txt
来安装列在文件内的所有依赖项。
遵循以上步骤,您可以有效地搭建和测试这个多模态语音情感识别系统。
热门项目推荐
相关项目推荐
- QQwen3-0.6BQwen3 是 Qwen 系列中最新一代大型语言模型,提供全面的密集模型和混合专家 (MoE) 模型。Qwen3 基于丰富的训练经验,在推理、指令遵循、代理能力和多语言支持方面取得了突破性进展00
- Mmarkitdown将文件和办公文档转换为 Markdown 的 Python 工具Python00
- Nn8nn8n 是一个工作流自动化平台,它结合了代码的灵活性和无代码的高效性。支持 400+ 集成、原生 AI 功能以及公平开源许可,n8n 能让你在完全掌控数据和部署的前提下,构建强大的自动化流程。源项目地址:https://github.com/n8n-io/n8nTypeScript00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript021moonbit-docs
MoonBit(月兔)是由IDEA研究院张宏波团队开发的AI云原生编程语言,专为云计算和边缘计算设计。其核心优势在于多后端编译,支持生成高效、紧凑的WebAssembly(WASM)、JavaScript及原生代码,WASM性能媲美Rust,原生运行速度比Java快15倍。语言设计融合函数式与命令式范式,提供强类型系统、模式匹配和垃圾回收机制,简化开发门槛。配套工具链整合云原生IDE、AI代码助手及快速编译器,支持实时测试与跨平台部署,适用于AI推理、智能设备和游戏开发。2023年首次公开后,MoonBit于2024年逐步开源核心组件,推进全球开发者生态建设,目标成为AI时代的高效基础设施,推动云边端一体化创新。 本仓库是 MoonBit 的文档TypeScript02- Ggraphiti用于构建和查询时序感知知识图谱的框架,专为在动态环境中运行的 AI 代理量身定制。Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中收藏图标切换器的优化建议2 freeCodeCamp课程中JavaScript变量提升机制的修正说明3 freeCodeCamp正则表达式教学视频中的语法修正4 freeCodeCamp城市天际线项目中CSS代码优化的关键步骤5 freeCodeCamp排序可视化项目中Bubble Sort算法的实现问题分析6 freeCodeCamp 优化测验提交确认弹窗的用户体验7 freeCodeCamp全栈开发课程中回文检测器项目的正则表达式教学优化8 freeCodeCamp平台证书查看功能异常的技术分析9 freeCodeCamp注册表单教程中input元素的type属性说明优化10 freeCodeCamp金字塔生成器项目中的循环条件优化解析
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
377
278

React Native鸿蒙化仓库
C++
67
134

openGauss kernel ~ openGauss is an open source relational database management system
C++
34
78

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
7
1

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
79
140

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
213
21

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
260
273

一个图论数据结构和算法库,提供多种图结构以及图算法。
Cangjie
26
92

开源、云原生的多云管理及混合云融合平台
Go
69
5

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
335
159