多模态语音情感识别项目使用指南
2024-09-27 06:02:46作者:宣海椒Queenly
本指南旨在帮助您了解并运行一个名为“多模态语音情感识别”的开源项目,该项目托管在GitHub上(https://github.com/Demfier/multimodal-speech-emotion-recognition.git),专注于轻量级且可解释的机器学习模型来识别语音中的情绪。
1. 目录结构及介绍
项目结构如下:
multimodal-speech-emotion-recognition/
├── 1_extract_emotion_labels.ipynb # 提取转录文本中的情感标签
├── 2_build_audio_vectors.ipynb # 构建音频信号向量
├── 3_extract_audio_features.ipynb # 提取音频特征
├── 4_prepare_data.ipynb # 数据预处理,准备用于实验
├── 5_audio_classification.ipynb # 音频数据上的ML分类器训练
├── 5_1_sentence_classification.ipynb # 文本数据上的ML分类器训练
├── 5_2_combined_classification.ipynb # 结合音频和文本的数据分类
├── 6_analyze.ipynb # 分析结果
├── config.py # 主要配置文件
├── lstm_classifier # LSTM分类器相关代码子目录
│ ├── config.py # LSTM分类器配置文件
│ └── lstm_classifier.py # LSTM分类器主要执行脚本
├── LICENSE
├── README.md # 项目说明文档
├── gitignore
├── main.py # 可能的主入口脚本
├── requirements.txt # 项目依赖列表
└── ... # 其他可能未列出的相关文件或文件夹
- Notebooks: 包含多个Jupyter Notebook,用于逐步完成从数据预处理到模型训练的过程。
- config.py: 项目的全局配置文件,用于设置通用参数。
- lstm_classifier/: 子目录内含LSTM分类器的配置和实现。
- requirements.txt: 列出了所有必要的Python库版本。
2. 项目的启动文件介绍
主要的交互点在于Jupyter Notebook系列文件,但实际程序执行的关键是通过命令行运行lstm_classifier/lstm_classifier.py文件来训练LSTM模型。首先,需要按顺序运行Notebooks来准备数据和模型输入,然后依据实验需求调整配置文件后执行指定的分类器训练。
主要步骤简述:
- 准备工作:从
1_extract_emotion_labels.ipynb开始,依序执行至4_prepare_data.ipynb。 - 模型训练:修改
config.py或其他特定配置(如LSTM的lstm_classifier/config.py),接着运行python lstm_classifier/lstm_classifier.py来进行模型训练。
3. 项目的配置文件介绍
- config.py: 包括了数据路径、模型保存路径等基本项目设置,以及一些实验控制参数。
- lstm_classifier/config.py: 特定于LSTM模型的配置,这里可以设定网络结构、学习率、批次大小等关键超参数。
使用配置文件指导:
- 打开
config.py,根据实验需求调整数据路径、模型存储路径以及任何其他需要自定义的设置。 - 对于LSTM模型,进入
lstm_classifier目录下的config.py,确认或修改神经网络架构细节,包括层数、单元数等。
注意:
在进行实验之前,确保已安装所有必要的库,并创建一个新的虚拟环境以避免版本冲突。利用pip install -r requirements.txt来安装列在文件内的所有依赖项。
遵循以上步骤,您可以有效地搭建和测试这个多模态语音情感识别系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
391
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
134
49
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
110