Crawl4AI项目中的LLM Token计算功能解析
2025-05-02 21:40:36作者:宣海椒Queenly
概述
在Crawl4AI项目中,最新版本0.4.24引入了一项重要功能——LLM Token使用量的精确计算。这一功能对于开发者优化AI应用成本、监控资源消耗具有重要意义。本文将深入解析这一功能的实现原理和使用方法。
功能实现原理
Crawl4AI通过LLMExtractionStrategy类实现了Token计算功能,其核心机制包括:
- 请求追踪:系统会记录每个LLM请求的详细数据
- 分类统计:将Token使用量分为Prompt(提示词)和Completion(生成内容)两类
- 历史记录:保留每次请求的详细使用数据,便于分析使用模式
使用方法
开发者可以通过简单的代码调用来获取Token使用情况:
# 初始化提取策略
extraction_strategy = LLMExtractionStrategy(
provider='openai/gpt-4o-mini',
api_token=os.getenv('OPENAI_API_KEY'),
schema=KnowledgeGraph.model_json_schema(),
extraction_type="schema",
instruction="Extract entities and relationships from the given content"
)
# 执行爬取操作后...
extraction_strategy.show_usage() # 显示使用情况
输出格式解析
系统会生成两种格式的统计报告:
- 汇总统计:
=== Token Usage Summary ===
Type Count
------------------------------
Completion 3,668
Prompt 18,087
Total 21,755
- 详细历史记录:
=== Usage History ===
Request # Completion Prompt Total
------------------------------------------------
1 1,654 13,174 14,828
2 2,014 4,913 6,927
技术价值
- 成本控制:精确计算每次请求的Token消耗,帮助开发者优化提示词设计
- 性能分析:通过历史记录分析不同内容提取任务的资源需求
- 预算规划:为长期项目提供可靠的成本预测依据
最佳实践建议
- 对于大规模爬取任务,建议定期检查Token使用情况
- 可以通过分析历史记录优化提取策略,减少不必要的Token消耗
- 复杂schema设计会增加Prompt Token数量,需要在表达清晰度和成本之间取得平衡
总结
Crawl4AI的Token计算功能为AI驱动的网络爬虫应用提供了宝贵的资源监控手段。这一功能的引入不仅提升了项目的实用性,也为开发者提供了优化AI应用性能的新维度。随着AI应用成本的日益受到关注,此类功能将成为AI开发工具的重要标配。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19