解析recipe-scrapers项目中JSON-LD数据异常处理的技术实践
2025-07-06 21:52:40作者:尤辰城Agatha
在开源项目recipe-scrapers中,开发者遇到了一个关于JSON-LD数据解析的典型问题。这个问题涉及到网站keukenliefde.nl的食谱数据抓取失败,其根本原因是JSON-LD格式数据中包含了非对象类型的值。
问题背景
JSON-LD是一种基于JSON格式的关联数据编码方式,常用于网页结构化数据的标记。在食谱类网站中,JSON-LD通常用于描述食谱的详细信息,如食材、步骤、作者等。recipe-scrapers项目正是通过解析这些结构化数据来获取食谱信息。
技术问题分析
在keukenliefde.nl网站的案例中,JSON-LD数据的@graph
数组中包含了一个布尔值false
,这与预期的数据结构不符。正常情况下,@graph
数组应只包含对象类型的数据,每个对象代表一个实体及其属性。
这种异常数据结构会导致标准的JSON-LD解析器抛出异常,因为:
- 解析器期望
@graph
数组中的每个元素都是有效的JSON对象 - 布尔值
false
不符合Schema.org词汇表的任何类型定义 - 这种非标准实现可能破坏数据图的完整性
解决方案
针对这种非标准的JSON-LD实现,recipe-scrapers项目采取了防御性编程策略:
- 数据验证:在解析JSON-LD数据时,首先验证
@graph
数组中的每个元素是否为有效对象 - 异常处理:过滤掉非对象类型的元素,只处理符合规范的数据
- 容错机制:即使部分数据无效,也尽可能提取可用的食谱信息
这种处理方式体现了良好的鲁棒性设计原则,确保了爬虫在遇到非标准数据时仍能继续工作,而不是直接崩溃。
技术启示
这个案例为我们提供了几个重要的技术启示:
- 网页结构化数据的质量参差不齐:即使使用标准如JSON-LD,不同网站的实现也可能存在差异
- 防御性编程的重要性:网络爬虫必须能够处理各种边界情况和异常数据
- Schema.org实现的多样性:虽然Schema.org提供了标准词汇表,但实际应用中存在多种实现方式
最佳实践建议
基于这个案例,我们可以总结出以下处理JSON-LD数据的最佳实践:
- 始终验证JSON-LD数据的结构和类型
- 实现灵活的数据提取逻辑,适应不同的实现方式
- 记录数据解析过程中的警告和错误,便于后期分析和改进
- 考虑使用专门的JSON-LD处理库,它们通常内置了更多的容错机制
通过这样的技术处理,recipe-scrapers项目能够更可靠地从各种食谱网站提取数据,即使面对非标准的实现也能保持稳定性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28