Apache Fury 中处理原始数组的序列化技术解析
2025-06-25 22:04:21作者:柏廷章Berta
Apache Fury 作为一个高性能的 Java 序列化框架,在处理原始数组类型时提供了专门的优化方案。本文将深入探讨 Fury 框架中原始数组的序列化机制,帮助开发者更好地理解和使用这一功能。
原始数组序列化的特殊性
原始数组(如 int[]、long[]、float[] 等)在 Java 中具有独特的特性,它们既是对象又包含原始类型数据。Fury 为这类数据结构提供了专门的序列化处理,以实现更高的性能和更小的序列化体积。
内置支持的数组类型
Fury 框架默认已经为多种原始数组类型提供了序列化支持:
- 基本类型数组:byte[]、short[]、int[]、long[]、float[]、double[]、char[]、boolean[]
- 字符串数组:String[]
- 对象数组:Object[]
这些数组类型的序列化器都已在框架内部注册,开发者无需额外配置即可直接使用。
序列化实现原理
Fury 对数组的序列化处理主要基于以下几个关键技术点:
- 尺寸内嵌写入:使用 writePrimitiveArrayWithSizeEmbedded 方法,将数组长度信息直接嵌入到序列化数据中
- 批量操作:对原始数组采用批量读写操作,减少方法调用开销
- 类型特化:为每种原始数组类型提供专门的序列化器实现
自定义数组序列化
虽然 Fury 已经内置了常见数组类型的支持,但在某些特殊场景下,开发者可能需要实现自定义的数组序列化逻辑。这时可以参考 ArraySerializers 中的实现方式:
// 以 int 数组为例的序列化实现模板
public void write(MemoryBuffer buffer, int[] value) {
buffer.writePrimitiveArrayWithSizeEmbedded(value, Platform.INT_ARRAY_OFFSET, value.length * 4);
}
public int[] read(MemoryBuffer buffer) {
long addr = buffer.readPrimitiveArrayWithSizeEmbedded();
int size = (int)(addr >>> 32);
int[] arr = new int[size];
buffer.copyToUnsafe(arr, Platform.INT_ARRAY_OFFSET, addr, size * 4L);
return arr;
}
性能优化建议
- 对于大型数组,优先使用 Fury 提供的内置序列化方法
- 避免在序列化过程中频繁创建临时数组
- 考虑数组数据的实际使用场景,选择最合适的序列化策略
- 对于多维数组,Fury 同样提供了良好的支持
总结
Apache Fury 对 Java 原始数组的序列化提供了全面而高效的解决方案。通过理解其内部机制,开发者可以更好地利用这一特性,在保证类型安全的同时获得优异的序列化性能。对于大多数应用场景,直接使用 Fury 内置的数组序列化功能即可满足需求,而在特殊情况下,也可以参考框架实现自定义的序列化逻辑。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133