BERT-like 模型在多模态情感识别中的应用指南
项目介绍
BERT-like 是你所需的一切:此项目源自INTERSPEECH 2020的一篇论文,它展示了如何通过联合微调“BERT风格”的自我监督模型来提升多模态语音情感识别的效果。基于PyTorch构建,并利用了Facebook AI团队的开源框架Fairseq的强大功能,这个项目不仅融合了最先进的架构,还提供了复杂的训练机制,如早期停止、学习率预热和调度器等。
该项目的核心在于其自定义的架构,设计用于兼容Fairseq接口,这包括对数据加载器、任务定义、模型结构、注意力层的改造以及定制损失函数的实现。
项目快速启动
要迅速上手本项目,你需要先准备必要的环境和模型前置训练权重。
环境设置
确保安装了PyTorch和Fairseq。你可能还需要其他依赖项,如torchaudio等,具体细节参照项目requirements.txt。
pip install torch torchaudio fairseq
下载预训练模型
下载VQ-wav2vec用于处理语音特征,以及RoBERTa作为文本特征提取器,并存储在一个名为pretrained_ssl的文件夹中。
数据预处理
- 对于文本数据,使用RoBERTa的tokenizer进行处理。
- 使用提供的脚本
convert_aud_to_token.py处理音频数据。
训练模型
以IEMOCAP数据集为例,运行以下命令开始训练:
CUDA_VISIBLE_DEVICES=8,7 python train.py --data /T_data/iemocap \
--task emotion_prediction \
--arch robertEMO_large \
--criterion emotion_prediction_cri \
--num-classes 8 \
--lr 1e-05 \
--total-num-update 2760 \
--warmup-updates 165 \
--binary-target-iemocap \
--data-raw /iemocap_data/
验证模型
训练后,使用以下命令验证模型性能:
CUDA_VISIBLE_DEVICES=1 python validate.py --data /T_data/iemocap \
--path '/checkpoints/checkpoint_best.pt' \
--task emotion_prediction \
--valid-subset test \
--batch-size 4
应用案例和最佳实践
在多模态系统中,该模型可以集成到语音助手、情绪分析服务和交互式对话系统中,以提供更加细腻的情感理解能力。最佳实践包括但不限于对输入数据的高度标准化预处理,精细调整超参数以适应特定领域,以及利用多GPU并行训练来加速模型的学习过程。
典型生态项目
虽然项目本身是围绕情感识别构建的,但其原理和技术可以广泛应用于其他多模态场景,如视觉问答、跨模态检索等领域。开发者可以借鉴其结合不同模态(如视觉、音频和文本)的方式,创建更加智能的应用程序,特别是在那些需要综合理解非言语信号的场景下。例如,将模型扩展至面部表情分析与语音情感分析的同时进行,或者探索在教育科技中的应用,评估学生在远程学习时的情绪状态。
以上内容构成了基于BERT-like模型进行多模态情感识别的基本指导,希望为研究者和开发者提供一个起点,引领他们在多模态数据分析的广阔领域内进一步探索。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00