首页
/ BERT-like 模型在多模态情感识别中的应用指南

BERT-like 模型在多模态情感识别中的应用指南

2024-10-10 03:35:27作者:羿妍玫Ivan

项目介绍

BERT-like 是你所需的一切:此项目源自INTERSPEECH 2020的一篇论文,它展示了如何通过联合微调“BERT风格”的自我监督模型来提升多模态语音情感识别的效果。基于PyTorch构建,并利用了Facebook AI团队的开源框架Fairseq的强大功能,这个项目不仅融合了最先进的架构,还提供了复杂的训练机制,如早期停止、学习率预热和调度器等。

该项目的核心在于其自定义的架构,设计用于兼容Fairseq接口,这包括对数据加载器、任务定义、模型结构、注意力层的改造以及定制损失函数的实现。

项目快速启动

要迅速上手本项目,你需要先准备必要的环境和模型前置训练权重。

环境设置

确保安装了PyTorch和Fairseq。你可能还需要其他依赖项,如torchaudio等,具体细节参照项目requirements.txt

pip install torch torchaudio fairseq

下载预训练模型

下载VQ-wav2vec用于处理语音特征,以及RoBERTa作为文本特征提取器,并存储在一个名为pretrained_ssl的文件夹中。

数据预处理

  1. 对于文本数据,使用RoBERTa的tokenizer进行处理。
  2. 使用提供的脚本convert_aud_to_token.py处理音频数据。

训练模型

以IEMOCAP数据集为例,运行以下命令开始训练:

CUDA_VISIBLE_DEVICES=8,7 python train.py --data /T_data/iemocap \
    --task emotion_prediction \
    --arch robertEMO_large \
    --criterion emotion_prediction_cri \
    --num-classes 8 \
    --lr 1e-05 \
    --total-num-update 2760 \
    --warmup-updates 165 \
    --binary-target-iemocap \
    --data-raw /iemocap_data/

验证模型

训练后,使用以下命令验证模型性能:

CUDA_VISIBLE_DEVICES=1 python validate.py --data /T_data/iemocap \
    --path '/checkpoints/checkpoint_best.pt' \
    --task emotion_prediction \
    --valid-subset test \
    --batch-size 4

应用案例和最佳实践

在多模态系统中,该模型可以集成到语音助手、情绪分析服务和交互式对话系统中,以提供更加细腻的情感理解能力。最佳实践包括但不限于对输入数据的高度标准化预处理,精细调整超参数以适应特定领域,以及利用多GPU并行训练来加速模型的学习过程。

典型生态项目

虽然项目本身是围绕情感识别构建的,但其原理和技术可以广泛应用于其他多模态场景,如视觉问答、跨模态检索等领域。开发者可以借鉴其结合不同模态(如视觉、音频和文本)的方式,创建更加智能的应用程序,特别是在那些需要综合理解非言语信号的场景下。例如,将模型扩展至面部表情分析与语音情感分析的同时进行,或者探索在教育科技中的应用,评估学生在远程学习时的情绪状态。


以上内容构成了基于BERT-like模型进行多模态情感识别的基本指导,希望为研究者和开发者提供一个起点,引领他们在多模态数据分析的广阔领域内进一步探索。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5