OpenBLAS 技术文档
2024-12-23 04:16:59作者:舒璇辛Bertina
1. 安装指南
1.1 依赖项
在安装 OpenBLAS 之前,请确保系统中已安装以下依赖项:
- GNU Make
- C 编译器(如 GCC 或 Clang)
- Fortran 编译器(可选,用于 LAPACK)
- IBM MASS(可选,仅在 Power CPU 上使用)
1.2 从源码安装
-
下载源码:
- 从项目主页下载:OpenBLAS 主页
- 或使用 Git 克隆代码:
git clone https://github.com/xianyi/OpenBLAS.git
-
进入 OpenBLAS 目录:
cd OpenBLAS -
编译:
- 默认编译(自动检测 CPU):
make - 指定目标 CPU:
make TARGET=NEHALEM - 交叉编译:
make BINARY=64 CC=mips64el-unknown-linux-gnu-gcc FC=mips64el-unknown-linux-gnu-gfortran HOSTCC=gcc TARGET=LOONGSON3A
- 默认编译(自动检测 CPU):
-
安装:
make install默认安装目录为
/opt/OpenBLAS,可以通过PREFIX=指定安装目录:make install PREFIX=/your/custom/path
1.3 使用 MASS 支持(仅限 Power CPU)
-
安装 IBM MASS 库:
- 在 Ubuntu 上:
sudo apt-get install libxlmass-devel.8.1.5 - 在 RHEL/CentOS 上:
sudo yum install libxlmass-devel.8.1.5
- 在 Ubuntu 上:
-
编译 OpenBLAS 并启用 MASS 支持:
make USE_MASS=1 TARGET=POWER8
2. 项目使用说明
2.1 简介
OpenBLAS 是一个基于 GotoBLAS2 1.13 BSD 版本的优化 BLAS(基本线性代数子程序)库。它提供了高效的线性代数运算,适用于多种 CPU 架构。
2.2 支持的 CPU 和操作系统
OpenBLAS 支持多种 CPU 架构,包括 x86/x86-64、MIPS、ARM、ARM64、PPC/PPC64 和 IBM zEnterprise 系统。具体支持的 CPU 型号请参考 GotoBLAS_01Readme.txt。
2.3 使用场景
OpenBLAS 主要用于科学计算、数据分析和机器学习等领域,提供高效的矩阵运算和向量运算。
3. 项目 API 使用文档
3.1 BLAS 接口
OpenBLAS 实现了标准的 BLAS 接口,包括以下主要功能:
- Level 1:向量运算(如点积、向量加法)
- Level 2:矩阵-向量运算(如矩阵乘向量)
- Level 3:矩阵-矩阵运算(如矩阵乘法)
3.2 LAPACK 接口
OpenBLAS 还包含了 LAPACK 库,提供了更高层次的线性代数运算,如矩阵分解、求解线性方程组等。
3.3 示例代码
以下是一个简单的矩阵乘法示例:
#include <cblas.h>
int main() {
double A[2][3] = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0} };
double B[3][2] = { {7.0, 8.0}, {9.0, 10.0}, {11.0, 12.0} };
double C[2][2] = { {0.0, 0.0}, {0.0, 0.0} };
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 2, 2, 3, 1.0, &A[0][0], 3, &B[0][0], 2, 0.0, &C[0][0], 2);
return 0;
}
4. 项目安装方式
4.1 从源码安装
如前所述,通过 make 命令编译并安装 OpenBLAS。
4.2 使用预编译二进制包
OpenBLAS 提供了官方的二进制包,适用于 Windows x86/x86_64 平台。可以从 SourceForge 或 GitHub Releases 页面下载。
4.3 使用包管理器安装
在某些操作系统上,可以通过包管理器直接安装 OpenBLAS,例如:
- Ubuntu:
sudo apt-get install libopenblas-dev - CentOS/RHEL:
sudo yum install openblas-devel
通过以上步骤,您可以顺利安装并使用 OpenBLAS 进行高效的线性代数运算。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869