OpenBLAS 技术文档
2024-12-23 05:55:37作者:舒璇辛Bertina
1. 安装指南
1.1 依赖项
在安装 OpenBLAS 之前,请确保系统中已安装以下依赖项:
- GNU Make
- C 编译器(如 GCC 或 Clang)
- Fortran 编译器(可选,用于 LAPACK)
- IBM MASS(可选,仅在 Power CPU 上使用)
1.2 从源码安装
-
下载源码:
- 从项目主页下载:OpenBLAS 主页
- 或使用 Git 克隆代码:
git clone https://github.com/xianyi/OpenBLAS.git
-
进入 OpenBLAS 目录:
cd OpenBLAS -
编译:
- 默认编译(自动检测 CPU):
make - 指定目标 CPU:
make TARGET=NEHALEM - 交叉编译:
make BINARY=64 CC=mips64el-unknown-linux-gnu-gcc FC=mips64el-unknown-linux-gnu-gfortran HOSTCC=gcc TARGET=LOONGSON3A
- 默认编译(自动检测 CPU):
-
安装:
make install默认安装目录为
/opt/OpenBLAS,可以通过PREFIX=指定安装目录:make install PREFIX=/your/custom/path
1.3 使用 MASS 支持(仅限 Power CPU)
-
安装 IBM MASS 库:
- 在 Ubuntu 上:
sudo apt-get install libxlmass-devel.8.1.5 - 在 RHEL/CentOS 上:
sudo yum install libxlmass-devel.8.1.5
- 在 Ubuntu 上:
-
编译 OpenBLAS 并启用 MASS 支持:
make USE_MASS=1 TARGET=POWER8
2. 项目使用说明
2.1 简介
OpenBLAS 是一个基于 GotoBLAS2 1.13 BSD 版本的优化 BLAS(基本线性代数子程序)库。它提供了高效的线性代数运算,适用于多种 CPU 架构。
2.2 支持的 CPU 和操作系统
OpenBLAS 支持多种 CPU 架构,包括 x86/x86-64、MIPS、ARM、ARM64、PPC/PPC64 和 IBM zEnterprise 系统。具体支持的 CPU 型号请参考 GotoBLAS_01Readme.txt。
2.3 使用场景
OpenBLAS 主要用于科学计算、数据分析和机器学习等领域,提供高效的矩阵运算和向量运算。
3. 项目 API 使用文档
3.1 BLAS 接口
OpenBLAS 实现了标准的 BLAS 接口,包括以下主要功能:
- Level 1:向量运算(如点积、向量加法)
- Level 2:矩阵-向量运算(如矩阵乘向量)
- Level 3:矩阵-矩阵运算(如矩阵乘法)
3.2 LAPACK 接口
OpenBLAS 还包含了 LAPACK 库,提供了更高层次的线性代数运算,如矩阵分解、求解线性方程组等。
3.3 示例代码
以下是一个简单的矩阵乘法示例:
#include <cblas.h>
int main() {
double A[2][3] = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0} };
double B[3][2] = { {7.0, 8.0}, {9.0, 10.0}, {11.0, 12.0} };
double C[2][2] = { {0.0, 0.0}, {0.0, 0.0} };
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, 2, 2, 3, 1.0, &A[0][0], 3, &B[0][0], 2, 0.0, &C[0][0], 2);
return 0;
}
4. 项目安装方式
4.1 从源码安装
如前所述,通过 make 命令编译并安装 OpenBLAS。
4.2 使用预编译二进制包
OpenBLAS 提供了官方的二进制包,适用于 Windows x86/x86_64 平台。可以从 SourceForge 或 GitHub Releases 页面下载。
4.3 使用包管理器安装
在某些操作系统上,可以通过包管理器直接安装 OpenBLAS,例如:
- Ubuntu:
sudo apt-get install libopenblas-dev - CentOS/RHEL:
sudo yum install openblas-devel
通过以上步骤,您可以顺利安装并使用 OpenBLAS 进行高效的线性代数运算。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248