AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.22版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,使开发者能够快速部署机器学习工作负载而无需手动配置环境。这些容器针对AWS基础设施进行了优化,支持多种计算实例类型,包括基于Arm架构的Graviton处理器。
本次发布的v1.22版本主要针对PyTorch框架在Graviton处理器上的推理场景进行了更新,提供了基于PyTorch 2.4.0的CPU推理容器镜像。该镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境,专为SageMaker服务优化。
技术规格与特性
该容器镜像的核心技术规格如下:
- PyTorch版本:2.4.0(CPU版本)
- Python版本:3.11
- 操作系统:Ubuntu 22.04
- 处理器架构:Arm64(Graviton兼容)
- 主要功能:模型推理服务
镜像中预装了完整的PyTorch生态系统工具链,包括torchaudio(2.4.0)、torchvision(0.19.0)等扩展库,以及torchserve(0.12.0)和torch-model-archiver(0.12.0)等模型服务工具。
关键软件包版本
容器内集成了丰富的Python软件包生态系统,主要包含以下重要组件:
-
数据处理与科学计算:
- NumPy 1.26.4
- pandas 2.2.3
- SciPy 1.14.1
- scikit-learn 1.5.2
-
计算机视觉:
- OpenCV-Python 4.10.0.84
- Pillow 11.0.0
-
开发工具:
- Cython 3.0.11
- Ninja 1.11.1.1
- FileLock 3.16.1
-
AWS服务集成:
- boto3 1.35.47
- botocore 1.35.47
- awscli 1.35.13
这些预装软件包覆盖了机器学习工作流中的常见需求,开发者可以立即开始模型部署工作而无需额外安装依赖。
系统级优化
该镜像针对Graviton处理器进行了系统级优化,包含了必要的Arm64架构系统库:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
这些系统库的配置确保了PyTorch和其他组件能够在Graviton处理器上充分发挥性能优势。
使用场景
这个容器镜像特别适合以下应用场景:
- SageMaker模型部署:直接在SageMaker服务中使用预构建的PyTorch环境部署推理端点
- 本地开发测试:开发者可以在本地构建与生产环境一致的开发环境
- CI/CD流水线:作为持续集成和持续部署流程中的标准化构建环境
- 边缘计算:在基于Graviton处理器的边缘设备上部署轻量级推理服务
版本兼容性
该容器镜像支持PyTorch 2.4.x系列的所有模型格式,并向后兼容大多数PyTorch 2.x版本的模型。开发者可以放心地将现有模型部署到这个环境中,无需担心兼容性问题。
AWS Deep Learning Containers的持续更新为机器学习工程师提供了稳定、高效的部署环境,特别是针对Arm架构的优化版本,为用户在成本敏感型应用场景中提供了更多选择。这个v1.22版本的发布进一步丰富了AWS在Arm生态系统的支持,为开发者构建高效、经济的机器学习解决方案提供了有力支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00