AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.22版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,使开发者能够快速部署机器学习工作负载而无需手动配置环境。这些容器针对AWS基础设施进行了优化,支持多种计算实例类型,包括基于Arm架构的Graviton处理器。
本次发布的v1.22版本主要针对PyTorch框架在Graviton处理器上的推理场景进行了更新,提供了基于PyTorch 2.4.0的CPU推理容器镜像。该镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境,专为SageMaker服务优化。
技术规格与特性
该容器镜像的核心技术规格如下:
- PyTorch版本:2.4.0(CPU版本)
- Python版本:3.11
- 操作系统:Ubuntu 22.04
- 处理器架构:Arm64(Graviton兼容)
- 主要功能:模型推理服务
镜像中预装了完整的PyTorch生态系统工具链,包括torchaudio(2.4.0)、torchvision(0.19.0)等扩展库,以及torchserve(0.12.0)和torch-model-archiver(0.12.0)等模型服务工具。
关键软件包版本
容器内集成了丰富的Python软件包生态系统,主要包含以下重要组件:
-
数据处理与科学计算:
- NumPy 1.26.4
- pandas 2.2.3
- SciPy 1.14.1
- scikit-learn 1.5.2
-
计算机视觉:
- OpenCV-Python 4.10.0.84
- Pillow 11.0.0
-
开发工具:
- Cython 3.0.11
- Ninja 1.11.1.1
- FileLock 3.16.1
-
AWS服务集成:
- boto3 1.35.47
- botocore 1.35.47
- awscli 1.35.13
这些预装软件包覆盖了机器学习工作流中的常见需求,开发者可以立即开始模型部署工作而无需额外安装依赖。
系统级优化
该镜像针对Graviton处理器进行了系统级优化,包含了必要的Arm64架构系统库:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
这些系统库的配置确保了PyTorch和其他组件能够在Graviton处理器上充分发挥性能优势。
使用场景
这个容器镜像特别适合以下应用场景:
- SageMaker模型部署:直接在SageMaker服务中使用预构建的PyTorch环境部署推理端点
- 本地开发测试:开发者可以在本地构建与生产环境一致的开发环境
- CI/CD流水线:作为持续集成和持续部署流程中的标准化构建环境
- 边缘计算:在基于Graviton处理器的边缘设备上部署轻量级推理服务
版本兼容性
该容器镜像支持PyTorch 2.4.x系列的所有模型格式,并向后兼容大多数PyTorch 2.x版本的模型。开发者可以放心地将现有模型部署到这个环境中,无需担心兼容性问题。
AWS Deep Learning Containers的持续更新为机器学习工程师提供了稳定、高效的部署环境,特别是针对Arm架构的优化版本,为用户在成本敏感型应用场景中提供了更多选择。这个v1.22版本的发布进一步丰富了AWS在Arm生态系统的支持,为开发者构建高效、经济的机器学习解决方案提供了有力支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00