AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,这些镜像经过优化并预装了流行的深度学习框架及其依赖项。这些容器可以帮助开发者快速部署深度学习应用,而无需花费大量时间配置环境。
近日,AWS DLC项目发布了TensorFlow 2.18.0版本的推理专用容器镜像,为机器学习推理任务提供了新的工具支持。这些镜像基于Ubuntu 20.04操作系统构建,支持Python 3.10环境,并针对CPU和GPU两种计算环境分别进行了优化。
镜像版本详情
本次发布的TensorFlow推理镜像包含两个主要变体:
-
CPU优化版本:适用于没有GPU加速的通用计算环境
- 基础镜像:Ubuntu 20.04
- Python版本:3.10
- TensorFlow Serving API版本:2.18.0
- 关键依赖包:PyYAML 6.0.2、boto3 1.36.23、protobuf 4.25.6等
-
GPU加速版本:针对NVIDIA CUDA 12.2环境优化
- 基础镜像:Ubuntu 20.04
- Python版本:3.10
- CUDA版本:12.2
- TensorFlow Serving API GPU版本:2.18.0
- 关键依赖包:与CPU版本相同,额外包含CUDA相关库如libcublas、libcudnn8等
技术特点与优势
-
性能优化:这些镜像经过AWS专门优化,针对TensorFlow推理任务进行了性能调优,能够充分发挥硬件潜力。
-
环境一致性:预构建的容器确保了开发、测试和生产环境的一致性,避免了"在我机器上能运行"的问题。
-
简化部署:集成了AWS CLI和boto3等工具,便于与AWS服务集成,简化了云上部署流程。
-
安全更新:基于Ubuntu 20.04 LTS,定期接收安全更新,确保生产环境的安全性。
-
多版本支持:除了具体的2.18.0版本外,还提供了2.18的通用标签,方便用户在不指定补丁版本的情况下获取最新更新。
适用场景
这些TensorFlow推理镜像特别适合以下场景:
- 需要快速部署TensorFlow模型的云原生应用
- 构建可扩展的机器学习推理服务
- 需要与AWS SageMaker集成的机器学习工作流
- 希望减少环境配置时间的开发团队
总结
AWS Deep Learning Containers提供的这些TensorFlow 2.18.0推理镜像,为开发者提供了开箱即用的深度学习推理环境。无论是CPU还是GPU环境,这些经过优化的容器都能帮助团队快速启动项目,专注于模型开发和业务逻辑,而不必担心底层基础设施的配置问题。对于使用TensorFlow进行机器学习推理的团队来说,这些镜像是一个值得考虑的高效解决方案。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









