QSanguosha-For-Hegemony项目AI响应机制详解
引言
本文深入解析QSanguosha-For-Hegemony项目中AI响应机制的核心实现,重点介绍如何通过Lua脚本为AI编写决策逻辑。作为项目AI系统的关键组成部分,响应机制决定了AI在各种游戏场景下的行为模式。
数据传递基础:QVariant对象
在AI决策过程中,数据传递是核心需求。项目中使用QVariant对象作为通用数据容器,它可以存储多种类型的数据:
local data = sgs.QVariant() -- 创建空对象
data:setValue(object) -- 设置值
从QVariant获取数据时,需要根据数据类型使用对应的转换方法:
| 数据类型 | 转换方法 |
|---|---|
| 数值 | data:toInt() |
| 字符串 | data:toString() |
| 布尔值 | data:toBool() |
| 卡牌结构体 | data:toCardUse() |
| 玩家对象 | data:toPlayer() |
核心响应函数解析
1. 技能发动决策
SmartAI:askForSkillInvoke(skill_name, data)函数处理技能发动请求:
sgs.ai_skill_invoke.tuntian = true -- 总是发动屯田技能
更复杂的决策可以使用函数:
sgs.ai_skill_invoke.complex_skill = function(self, data)
return self:isFriend(target) -- 根据条件决定是否发动
end
2. 选择决策
SmartAI:askForChoice(skill_name, choices)处理多选一场景:
sgs.ai_skill_choice.jilve = "zhiheng" -- 极略技能固定选择制衡
3. 弃牌决策
SmartAI:askForDiscard处理弃牌请求,典型实现如刚烈技能的AI:
sgs.ai_skill_discard.ganglie = function(self, discard_num, optional, include_equip)
if self.player:getHp() > self.player:getHandcardNum() then
return {} -- 体力值大于手牌数时不弃牌
end
-- 其他弃牌逻辑...
end
4. 卡牌使用决策
SmartAI:askForUseCard处理卡牌使用请求,如连理技能:
sgs.ai_skill_use["@lianli"] = function(self, prompt)
for _, friend in ipairs(self.friends) do
if friend:getGeneral():isMale() then
return "@LianliCard=.->" .. friend:objectName()
end
end
return "."
end
高级响应机制
1. 拼点决策
SmartAI:askForPindian默认返回点数最大的手牌,开发者可以覆盖此行为。
2. 玩家选择决策
SmartAI:askForPlayerChosen处理玩家选择,项目提供了标准策略:
-- 使用标准伤害策略
sgs.ai_skill_playerchosen.quhu = sgs.ai_skill_playerchosen.damage
-- 使用标准视为使用杀策略
sgs.ai_skill_playerchosen.luanwu = sgs.ai_skill_playerchosen.zero_card_as_slash
3. 濒死救援决策
SmartAI:askForSinglePeach处理濒死救援场景,开发者需要根据游戏状态决定是否使用桃。
最佳实践建议
-
优先使用现有策略:项目已提供多种标准策略,应优先考虑复用
-
保持决策逻辑简洁:复杂的决策应拆分为多个辅助函数
-
考虑游戏平衡性:AI决策应保持合理强度,避免过于强大或弱小
-
充分测试边界条件:特别是手牌数为0、体力值为1等临界情况
-
注释决策逻辑:说明AI行为的原因,便于后续维护
结语
QSanguosha-For-Hegemony的AI响应机制提供了丰富的接口和灵活的扩展方式,使开发者能够为各种技能和场景定制AI行为。理解这些核心机制是编写高质量AI的基础,开发者应在实践中不断优化决策逻辑,提升游戏体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00