GLM-4V-9B模型INT4量化后推理速度未提升的技术解析
在深度学习模型部署实践中,量化技术通常被视为提升推理效率的重要手段。然而,GLM-4V-9B模型在应用INT4量化后却出现了推理速度不升反降的现象,这一现象值得深入探讨其背后的技术原因。
量化技术的本质与预期效果
量化技术的基本原理是将模型参数从高精度浮点数(如FP32)转换为低精度格式(如INT8、INT4),理论上可以带来三方面优势:
- 减少内存占用:INT4仅需FP32的1/8存储空间
- 降低计算复杂度:整数运算比浮点运算更高效
- 提高内存带宽利用率:相同带宽下可传输更多参数
GLM-4V-9B量化实现方式分析
GLM-4V-9B当前采用的INT4量化是基于bitsandbytes库实现的,这种实现方式存在两个关键特征:
-
非原生INT4计算:虽然权重以INT4格式存储,但在实际计算时仍需要解压回更高精度的格式(如FP16)进行计算,这导致无法充分发挥INT4的计算优势。
-
显存传输瓶颈:大模型推理过程中,数据在内存和显存间的传输成为主要瓶颈。虽然INT4减少了数据量,但额外的解压操作反而可能增加总体耗时。
性能未提升的深层原因
结合量化实现方式,我们可以分析出速度未提升的多方面原因:
-
计算图未优化:当前实现没有将整个计算图优化为真正的INT4计算流程,权重解压操作引入了额外开销。
-
内存带宽限制:对于GLM-4V-9B这样的大模型,即使参数体积减小,但显存带宽可能已成为瓶颈,量化带来的收益被掩盖。
-
算子支持不足:缺乏针对INT4的专用优化算子,无法利用硬件层面的INT4计算加速特性。
优化方向与建议
要使INT4量化真正发挥加速效果,可以考虑以下技术路线:
-
全图INT4优化:将整个计算图统一为INT4计算,避免频繁的格式转换。
-
专用内核开发:针对目标硬件平台开发优化的INT4计算内核。
-
混合精度策略:对模型不同部分采用不同精度,平衡精度和速度。
-
内存访问优化:优化数据布局,提高缓存命中率。
实际应用中的权衡
在实际部署GLM-4V-9B时,需要根据具体场景权衡:
- 如果目标主要是减少内存占用,当前INT4量化仍有价值
- 若追求极致推理速度,可能需要等待更完善的INT4优化实现
- 可以考虑INT8量化作为折中方案,在多数硬件上已有良好支持
量化技术的效果高度依赖于具体实现方式和硬件支持,这一案例很好地说明了理论优势与实际效果之间可能存在的差距,也为大模型量化优化提供了有价值的参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00