LLM项目中的JSON Schema测试实践与经验总结
2025-05-30 23:58:03作者:牧宁李
在LLM(大型语言模型)应用开发中,如何有效地测试和验证模型对结构化输出的处理能力是一个重要课题。本文将通过实际案例,分享在LLM项目中设计和测试JSON Schema的经验与最佳实践。
Schema设计基础
JSON Schema是一种用于描述JSON数据结构的规范语言。在LLM项目中,合理设计Schema对于确保模型输出的一致性和准确性至关重要。基础Schema设计应包含以下要素:
- 类型定义:明确指定每个字段的数据类型
- 属性约束:设置字段的最小长度、格式等限制
- 必填字段:通过required属性指定必须包含的字段
- 额外属性控制:决定是否允许Schema中未定义的额外属性
一个简单的对象Schema示例如下:
{
"type": "object",
"properties": {
"name": {"type": "string"},
"bio": {"type": "string"}
}
}
复杂Schema设计
对于更复杂的数据结构,我们可以设计包含嵌套对象和数组的Schema。例如,描述一组狗的信息:
{
"type": "object",
"properties": {
"dogs": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "minLength": 1},
"bio": {"type": "string", "minLength": 1}
},
"required": ["name", "bio"],
"additionalProperties": false
}
}
},
"required": ["dogs"],
"additionalProperties": false
}
这个Schema定义了:
- 一个包含dogs数组的对象
- 每个dog对象必须有name和bio字段
- 禁止额外的未定义属性
- 所有字符串字段必须有内容(minLength: 1)
实际应用中的挑战
在音频转录等实际应用中,Schema设计可能会遇到一些挑战。例如,尝试为音频转录设计包含时间戳的Schema时:
{
"type": "object",
"properties": {
"segments": {
"type": "array",
"items": {
"type": "object",
"properties": {
"speaker_name": {"type": "string"},
"spoken_text": {"type": "string"},
"timestamp_mm_ss": {"type": "string"}
}
}
}
}
}
实际测试中发现,某些模型(如Gemini 2.0 Flash)可能会忽略Schema中的某些字段(如时间戳),这表明不同模型对Schema的支持程度存在差异。
使用Pydantic增强Schema
为了获得更好的Schema控制,可以结合Pydantic库使用。Pydantic提供了更丰富的字段定义选项,包括:
- 字段描述:通过Field的title参数提供额外提示
- 数据格式约束:如日期格式
- 额外属性控制:通过ConfigDict禁止未定义属性
示例:
from pydantic import BaseModel, Field, ConfigDict
class Article(BaseModel):
headline: str
date: str = Field(title='YYYY-MM-DD')
tags: list[str]
people: list[str]
summary: str
model_config = ConfigDict(extra="forbid")
这种方式的优势在于:
- 提供更明确的字段说明
- 自动生成符合OpenAPI规范的JSON Schema
- 严格限制输出结构,避免模型添加未请求的字段
测试策略建议
基于实践经验,建议采用以下测试策略:
- 分层测试:从简单Schema开始,逐步增加复杂度
- 多模型验证:在不同模型上测试相同Schema
- 边界测试:尝试极端输入验证Schema鲁棒性
- 结果验证:不仅检查结构,还要验证内容合理性
总结
在LLM项目中合理设计和使用JSON Schema可以显著提高模型输出的可靠性和可用性。通过基础Schema设计、复杂结构处理、Pydantic增强以及系统化的测试策略,开发者可以构建出更健壮的LLM应用。未来随着模型能力的提升,Schema支持也将不断完善,为结构化输出提供更多可能性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1