LLM项目中的JSON Schema测试实践与经验总结
2025-05-30 08:46:40作者:牧宁李
在LLM(大型语言模型)应用开发中,如何有效地测试和验证模型对结构化输出的处理能力是一个重要课题。本文将通过实际案例,分享在LLM项目中设计和测试JSON Schema的经验与最佳实践。
Schema设计基础
JSON Schema是一种用于描述JSON数据结构的规范语言。在LLM项目中,合理设计Schema对于确保模型输出的一致性和准确性至关重要。基础Schema设计应包含以下要素:
- 类型定义:明确指定每个字段的数据类型
- 属性约束:设置字段的最小长度、格式等限制
- 必填字段:通过required属性指定必须包含的字段
- 额外属性控制:决定是否允许Schema中未定义的额外属性
一个简单的对象Schema示例如下:
{
"type": "object",
"properties": {
"name": {"type": "string"},
"bio": {"type": "string"}
}
}
复杂Schema设计
对于更复杂的数据结构,我们可以设计包含嵌套对象和数组的Schema。例如,描述一组狗的信息:
{
"type": "object",
"properties": {
"dogs": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "minLength": 1},
"bio": {"type": "string", "minLength": 1}
},
"required": ["name", "bio"],
"additionalProperties": false
}
}
},
"required": ["dogs"],
"additionalProperties": false
}
这个Schema定义了:
- 一个包含dogs数组的对象
- 每个dog对象必须有name和bio字段
- 禁止额外的未定义属性
- 所有字符串字段必须有内容(minLength: 1)
实际应用中的挑战
在音频转录等实际应用中,Schema设计可能会遇到一些挑战。例如,尝试为音频转录设计包含时间戳的Schema时:
{
"type": "object",
"properties": {
"segments": {
"type": "array",
"items": {
"type": "object",
"properties": {
"speaker_name": {"type": "string"},
"spoken_text": {"type": "string"},
"timestamp_mm_ss": {"type": "string"}
}
}
}
}
}
实际测试中发现,某些模型(如Gemini 2.0 Flash)可能会忽略Schema中的某些字段(如时间戳),这表明不同模型对Schema的支持程度存在差异。
使用Pydantic增强Schema
为了获得更好的Schema控制,可以结合Pydantic库使用。Pydantic提供了更丰富的字段定义选项,包括:
- 字段描述:通过Field的title参数提供额外提示
- 数据格式约束:如日期格式
- 额外属性控制:通过ConfigDict禁止未定义属性
示例:
from pydantic import BaseModel, Field, ConfigDict
class Article(BaseModel):
headline: str
date: str = Field(title='YYYY-MM-DD')
tags: list[str]
people: list[str]
summary: str
model_config = ConfigDict(extra="forbid")
这种方式的优势在于:
- 提供更明确的字段说明
- 自动生成符合OpenAPI规范的JSON Schema
- 严格限制输出结构,避免模型添加未请求的字段
测试策略建议
基于实践经验,建议采用以下测试策略:
- 分层测试:从简单Schema开始,逐步增加复杂度
- 多模型验证:在不同模型上测试相同Schema
- 边界测试:尝试极端输入验证Schema鲁棒性
- 结果验证:不仅检查结构,还要验证内容合理性
总结
在LLM项目中合理设计和使用JSON Schema可以显著提高模型输出的可靠性和可用性。通过基础Schema设计、复杂结构处理、Pydantic增强以及系统化的测试策略,开发者可以构建出更健壮的LLM应用。未来随着模型能力的提升,Schema支持也将不断完善,为结构化输出提供更多可能性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133