LLM项目中的JSON Schema测试实践与经验总结
2025-05-30 10:45:48作者:牧宁李
在LLM(大型语言模型)应用开发中,如何有效地测试和验证模型对结构化输出的处理能力是一个重要课题。本文将通过实际案例,分享在LLM项目中设计和测试JSON Schema的经验与最佳实践。
Schema设计基础
JSON Schema是一种用于描述JSON数据结构的规范语言。在LLM项目中,合理设计Schema对于确保模型输出的一致性和准确性至关重要。基础Schema设计应包含以下要素:
- 类型定义:明确指定每个字段的数据类型
- 属性约束:设置字段的最小长度、格式等限制
- 必填字段:通过required属性指定必须包含的字段
- 额外属性控制:决定是否允许Schema中未定义的额外属性
一个简单的对象Schema示例如下:
{
"type": "object",
"properties": {
"name": {"type": "string"},
"bio": {"type": "string"}
}
}
复杂Schema设计
对于更复杂的数据结构,我们可以设计包含嵌套对象和数组的Schema。例如,描述一组狗的信息:
{
"type": "object",
"properties": {
"dogs": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "minLength": 1},
"bio": {"type": "string", "minLength": 1}
},
"required": ["name", "bio"],
"additionalProperties": false
}
}
},
"required": ["dogs"],
"additionalProperties": false
}
这个Schema定义了:
- 一个包含dogs数组的对象
- 每个dog对象必须有name和bio字段
- 禁止额外的未定义属性
- 所有字符串字段必须有内容(minLength: 1)
实际应用中的挑战
在音频转录等实际应用中,Schema设计可能会遇到一些挑战。例如,尝试为音频转录设计包含时间戳的Schema时:
{
"type": "object",
"properties": {
"segments": {
"type": "array",
"items": {
"type": "object",
"properties": {
"speaker_name": {"type": "string"},
"spoken_text": {"type": "string"},
"timestamp_mm_ss": {"type": "string"}
}
}
}
}
}
实际测试中发现,某些模型(如Gemini 2.0 Flash)可能会忽略Schema中的某些字段(如时间戳),这表明不同模型对Schema的支持程度存在差异。
使用Pydantic增强Schema
为了获得更好的Schema控制,可以结合Pydantic库使用。Pydantic提供了更丰富的字段定义选项,包括:
- 字段描述:通过Field的title参数提供额外提示
- 数据格式约束:如日期格式
- 额外属性控制:通过ConfigDict禁止未定义属性
示例:
from pydantic import BaseModel, Field, ConfigDict
class Article(BaseModel):
headline: str
date: str = Field(title='YYYY-MM-DD')
tags: list[str]
people: list[str]
summary: str
model_config = ConfigDict(extra="forbid")
这种方式的优势在于:
- 提供更明确的字段说明
- 自动生成符合OpenAPI规范的JSON Schema
- 严格限制输出结构,避免模型添加未请求的字段
测试策略建议
基于实践经验,建议采用以下测试策略:
- 分层测试:从简单Schema开始,逐步增加复杂度
- 多模型验证:在不同模型上测试相同Schema
- 边界测试:尝试极端输入验证Schema鲁棒性
- 结果验证:不仅检查结构,还要验证内容合理性
总结
在LLM项目中合理设计和使用JSON Schema可以显著提高模型输出的可靠性和可用性。通过基础Schema设计、复杂结构处理、Pydantic增强以及系统化的测试策略,开发者可以构建出更健壮的LLM应用。未来随着模型能力的提升,Schema支持也将不断完善,为结构化输出提供更多可能性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878