BayesianOptimization项目中的二维函数可视化实现
2025-05-28 02:56:11作者:裘旻烁
概述
在BayesianOptimization项目中,可视化是理解贝叶斯优化过程的重要工具。虽然官方文档主要展示了1D函数的可视化示例,但实际应用中经常需要处理多维参数空间。本文将详细介绍如何实现二维函数的贝叶斯优化可视化。
二维函数可视化原理
与一维情况不同,二维函数的可视化需要处理更复杂的空间关系。核心思想是通过网格采样来构建预测表面,然后使用等高线或热图展示高斯过程模型的预测结果。
实现步骤
1. 定义目标函数
首先需要定义一个二维目标函数,例如:
def black_box_function(x, y):
value = x**3 - (y - 1)**2 - x**2 - x*y
return max(value, 0)
2. 设置参数边界
为每个参数定义搜索范围:
pbounds = {'x': (2, 4), 'y': (-3, 3)}
3. 创建可视化函数
关键步骤是创建一个能够绘制二维预测表面的函数:
def plot_target_estimation(pbounds, optimizer, next_point, cycle):
# 创建网格
num_points = 300
x = np.linspace(pbounds['x'][0]-0.1, pbounds['x'][1]+0.1, num_points)
y = np.linspace(pbounds['y'][0]-0.1, pbounds['y'][1]+0.1, num_points)
xy = np.array([[x_i, y_j] for y_j in y for x_i in x])
X, Y = np.meshgrid(x, y)
# 创建图形
fig, axs = plt.subplots(figsize=(4,4))
# 获取优化结果
res = optimizer.res
x_ = np.array([r["params"]['x'] for r in res])
y_ = np.array([r["params"]['y'] for r in res])
# 预测并绘制表面
Z_est = optimizer._gp.predict(xy).reshape(num_points, num_points)
axs.contourf(X, Y, Z_est, cmap=plt.cm.coolwarm)
axs.set_title(f'Target estimated, cycle n.{cycle+1}')
# 标记已评估点和下一个点
axs.scatter(x_, y_, c='red', s=80, edgecolors='black')
axs.scatter(next_point['x'], next_point['y'], c='white', s=80, edgecolors='black')
return fig
4. 优化循环
在优化过程中,每次迭代都调用可视化函数:
for cycle in range(MaxIterations):
next_point = optimizer.suggest(utility)
fig = plot_target_estimation(pbounds, optimizer, next_point, cycle)
fig.savefig(f"Cycle {cycle+1}")
target = black_box_function(**next_point)
optimizer.register(params=next_point, target=target)
技术要点
-
网格创建:使用
np.linspace和np.meshgrid创建二维参数网格,用于预测整个参数空间的响应。 -
高斯过程预测:通过
optimizer._gp.predict方法获取模型在整个参数空间的预测值。 -
可视化技巧:
- 使用
contourf绘制填充等高线图,直观展示预测表面 - 用红色点标记已评估的点
- 用白色点标记将要评估的下一个点
- 使用
-
迭代保存:每次迭代保存图像,可以后期制作成动画或逐步分析优化过程。
应用场景
这种二维可视化方法特别适用于:
- 理解贝叶斯优化在高维空间的探索-利用平衡
- 分析算法在不同区域的置信度变化
- 教学演示多维优化过程
- 调试自定义目标函数的优化问题
总结
通过扩展一维可视化方法,我们可以有效地展示二维贝叶斯优化过程。关键在于合理构建参数网格,正确调用高斯过程预测方法,以及选择适当的可视化技术来呈现多维数据。这种方法可以推广到更高维度,但需要注意"维度灾难"带来的计算挑战。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0114
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
272
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7