Ragas项目中的摘要评分公式优化思路
2025-05-26 23:21:48作者:郜逊炳
摘要评分公式的问题发现
在Ragas项目的实际应用中,开发者发现摘要评分(Summarization Score)的计算公式存在不合理之处。该评分由问答得分(QA Score)和简洁度得分(Conciseness Score)两部分组成,但这两个指标的特性存在矛盾:
- 问答得分(QA Score)的取值范围是0到1,分值越高表示质量越好
- 简洁度得分(Conciseness Score)理论上取值范围是0到无穷大,分值越低表示越简洁
直接将这两个指标取平均值作为最终评分显然不合理,因为它们的量纲和优化方向不一致。
问题分析与解决方案
简洁度得分的标准化处理
Ragas项目组经过讨论,决定对简洁度得分进行标准化处理,使其也落在0到1的范围内。具体实现方式为:
简洁度得分 = 1 - (摘要长度 / 原文长度)
这种处理方式有两个优点:
- 将得分范围标准化到0-1区间
- 保持了"分值越高表示越简洁"的特性
边界情况的处理
在实际应用中,可能会出现摘要长度超过原文长度的特殊情况。针对这种边界情况,项目组决定:
- 当摘要长度超过原文长度时,直接赋予0分
- 使用min函数确保计算不会出现负值
权重分配的可配置化
最初的设计中,问答得分和简洁度得分各占50%权重。但项目组意识到不同应用场景可能需要不同的权重分配,因此增加了权重系数(coeff)参数:
最终得分 = coeff × QA得分 + (1-coeff) × (1 - 简洁度得分)
这种设计使得用户可以根据具体需求调整两个指标的相对重要性,提高了评分的灵活性。
技术实现细节
在代码层面,Ragas项目通过以下方式实现了优化后的评分公式:
- 使用异步方法提取关键短语和生成问题
- 计算问答得分时考虑答案质量
- 计算简洁度得分时加入长度惩罚机制
- 最终通过加权平均得到综合评分
未来优化方向
项目组认识到摘要评分本身是一个复杂的问题,即使是人工评估也存在困难。未来计划:
- 引入基于排名的评估方法,这可能更适合摘要质量评估
- 探索更多评估维度,如信息覆盖率、流畅性等
- 考虑使用机器学习方法自动学习各维度的权重
总结
通过对Ragas项目摘要评分公式的优化,解决了原始设计中指标不一致的问题,使评分更加合理和科学。同时,通过引入可配置权重,提高了评分的灵活性,能够适应不同场景的需求。这一改进过程展示了开源项目中如何通过社区协作解决技术问题,并不断优化算法设计。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143