Ragas项目中的摘要评分公式优化思路
2025-05-26 11:20:04作者:郜逊炳
摘要评分公式的问题发现
在Ragas项目的实际应用中,开发者发现摘要评分(Summarization Score)的计算公式存在不合理之处。该评分由问答得分(QA Score)和简洁度得分(Conciseness Score)两部分组成,但这两个指标的特性存在矛盾:
- 问答得分(QA Score)的取值范围是0到1,分值越高表示质量越好
- 简洁度得分(Conciseness Score)理论上取值范围是0到无穷大,分值越低表示越简洁
直接将这两个指标取平均值作为最终评分显然不合理,因为它们的量纲和优化方向不一致。
问题分析与解决方案
简洁度得分的标准化处理
Ragas项目组经过讨论,决定对简洁度得分进行标准化处理,使其也落在0到1的范围内。具体实现方式为:
简洁度得分 = 1 - (摘要长度 / 原文长度)
这种处理方式有两个优点:
- 将得分范围标准化到0-1区间
- 保持了"分值越高表示越简洁"的特性
边界情况的处理
在实际应用中,可能会出现摘要长度超过原文长度的特殊情况。针对这种边界情况,项目组决定:
- 当摘要长度超过原文长度时,直接赋予0分
- 使用min函数确保计算不会出现负值
权重分配的可配置化
最初的设计中,问答得分和简洁度得分各占50%权重。但项目组意识到不同应用场景可能需要不同的权重分配,因此增加了权重系数(coeff)参数:
最终得分 = coeff × QA得分 + (1-coeff) × (1 - 简洁度得分)
这种设计使得用户可以根据具体需求调整两个指标的相对重要性,提高了评分的灵活性。
技术实现细节
在代码层面,Ragas项目通过以下方式实现了优化后的评分公式:
- 使用异步方法提取关键短语和生成问题
- 计算问答得分时考虑答案质量
- 计算简洁度得分时加入长度惩罚机制
- 最终通过加权平均得到综合评分
未来优化方向
项目组认识到摘要评分本身是一个复杂的问题,即使是人工评估也存在困难。未来计划:
- 引入基于排名的评估方法,这可能更适合摘要质量评估
- 探索更多评估维度,如信息覆盖率、流畅性等
- 考虑使用机器学习方法自动学习各维度的权重
总结
通过对Ragas项目摘要评分公式的优化,解决了原始设计中指标不一致的问题,使评分更加合理和科学。同时,通过引入可配置权重,提高了评分的灵活性,能够适应不同场景的需求。这一改进过程展示了开源项目中如何通过社区协作解决技术问题,并不断优化算法设计。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197