Ragas项目中答案相关性度量的性能优化思路
2025-05-26 05:33:39作者:房伟宁
在评估问答系统性能时,答案相关性(Answer Relevance)是一个关键指标。Ragas项目团队最近发现了一个可以显著优化该指标计算性能的方法,值得开发者关注。
当前实现的问题
Ragas现有的答案相关性度量实现中,计算过程包含两个主要部分:
- 判断答案是否具有承诺性(noncommittal)
- 计算问题与生成问题之间的余弦相似度
当前实现总是先计算余弦相似度,然后乘以承诺性判断结果(0或1)。这意味着即使答案是非承诺性的(此时最终得分必然为0),系统仍然会执行计算密集型的余弦相似度运算。
优化方案
通过分析发现,当答案被判定为非承诺性时,余弦相似度的计算结果实际上不会影响最终得分。因此,可以在计算流程中加入早期终止条件:
- 首先执行承诺性判断
- 如果答案是非承诺性的,直接返回0分,跳过余弦相似度计算
- 只有确认答案具有承诺性时,才进行余弦相似度计算
这种优化在保持度量准确性的同时,可以显著减少不必要的计算开销。
实现细节
优化后的伪代码逻辑如下:
def calculate_score():
# 获取问题和生成的问题
question = get_question()
gen_questions = get_generated_questions()
# 检查承诺性
is_noncommittal = check_noncommittal(answers)
# 早期终止条件
if is_noncommittal:
return 0.0
# 只有当答案有承诺性时才计算相似度
cosine_sim = calculate_similarity(question, gen_questions)
return cosine_sim.mean()
性能影响
这种优化在以下场景特别有价值:
- 处理大量非承诺性答案时(如FAQ系统中"我不知道"类回答)
- 使用大型嵌入模型计算相似度时
- 需要实时或批量评估大量问答对的场景
预计优化后,对于包含大量非承诺性答案的数据集,评估速度将有显著提升。
结论
这种基于业务逻辑的早期终止优化,展示了在保持算法准确性的同时提升性能的经典方法。开发者在使用Ragas进行问答系统评估时,可以考虑应用此优化来提升评估效率。这种思路也适用于其他需要结合分类判断和连续值计算的评估场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259