推荐:量化神经网络 - 实现高效且准确的深度学习模型
2024-06-22 03:47:24作者:郁楠烈Hubert
1、项目介绍
在计算机视觉和深度学习领域,Quantization Networks 是一项创新性的研究项目。这个开源仓库提供了在CVPR 2019会议上发表的工作的训练代码,其目标是通过提供一个简单统一的方法来处理权重和激活函数的量化问题。
该项目的主要贡献是一种可微分的非线性函数形式化,将量化过程表示为多个Sigmoid函数的线性组合。这些函数具有可学习的偏置和尺度参数,可以在损失不增加的情况下,以端到端的方式进行优化学习。
2、项目技术分析
Quantization Networks采用了连续放松Sigmoid函数陡峭度的策略,使得量化过程可以无缝集成到反向传播中。这种方法避免了传统量化方法中的精度损失,并允许直接在原始浮点数模型上训练量化模型。它支持对图像分类和对象检测任务的广泛实验,表现出优于现有方法的性能。
3、项目及技术应用场景
- 深度学习模型压缩: 对于资源受限的设备(如嵌入式系统或移动设备),Quantization Networks提供了一种减小模型大小和计算复杂度的有效途径。
- 实时应用: 在图像识别、视频分析等实时应用中,量化后的模型能更快地运行,提高整体系统效率。
- 云端服务优化: 对于云服务提供商来说,模型的量化可以帮助减少计算资源消耗,降低成本。
4、项目特点
- 简洁统一: 提供了一个通用框架来处理权重和激活函数的量化,简化了模型优化流程。
- 损失无损: 利用不同的Sigmoid函数组合实现可微量化,保证在训练过程中损失不会增加。
- 端到端训练: 可以与现有训练流程无缝融合,无需额外步骤。
- 广泛应用: 支持多种任务,包括图像分类和对象检测,在实际场景中有广泛的应用潜力。
开始你的量化之旅!
如果你正在寻找一种能够提高模型效率而不牺牲性能的方法,Quantization Networks是一个值得尝试的选择。只需Python 3.5、OpenCV和PyTorch 0.3.0环境,即可开始训练ResNet-18的权重量化模型,只需运行sh quan-weight.sh命令。
最后,如果你在研究中使用了这个项目,请引用:
@inproceedings{yang2019quantization,
title={Quantization Networks},
author={Yang Jiwei, Shen Xu, Xing Jun, Tian Xinmei, Li Houqiang, Deng Bing, Huang Jianqiang and Hua Xian-sheng},
booktitle={CVPR},
year={2019}
}
加入Quantization Networks社区,探索深度学习量化的新境界!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248