Volcano项目GPU队列资源指标扩展需求分析
2025-06-12 05:46:18作者:郜逊炳
背景概述
Volcano作为Kubernetes的批量计算系统,当前版本中主要提供了CPU和内存资源的指标监控功能,包括队列分配量(queue_allocated)和应得资源量(queue_deserved)等核心指标。然而,随着AI/ML工作负载的快速增长,GPU资源已成为批处理任务中的关键计算资源,现有的监控指标体系在GPU资源方面存在明显不足。
当前限制
在现有实现中,Volcano的指标系统主要针对传统计算资源设计:
- 支持CPU资源的毫核级监控(queue_allocated_milli_cpu)
- 支持内存资源的字节级监控
- 提供了队列级别的资源分配和应得指标
但对于GPU这类扩展资源(Extended Resources),系统尚未提供同级别的监控能力,这使得管理员无法准确掌握:
- 各队列实际获得的GPU资源量
- 根据权重配置应得的GPU资源量
- GPU资源的利用率和使用效率
需求分析
AI批处理工作负载的特殊性要求对GPU资源进行精细化监控:
- 资源分配可视化:需要明确每个队列获得的GPU数量,避免资源争用
- 公平调度验证:通过应得指标验证调度器是否按配置权重分配GPU
- 容量规划:基于历史数据评估GPU需求趋势
- 异常检测:识别GPU资源分配异常或利用率过低的情况
技术实现建议
参考现有CPU指标的实现方式,建议采用以下设计方案:
-
统一扩展资源指标:
- 使用通用指标名称如queue_allocated_extended_resources
- 通过资源类型标签区分不同资源(如GPU、FPGA等)
-
GPU特定指标:
- queue_allocated_gpu:已分配GPU数量
- queue_deserved_gpu:应得GPU数量
- 支持整数和分数表示(如1.5个GPU)
-
指标维度:
- 按队列名称区分
- 按GPU类型区分(当集群有多种GPU时)
- 包含时间戳信息
实现考量
在实际开发中需要注意:
- 指标采集频率对系统性能的影响
- 指标命名规范的统一性
- 与现有监控系统的兼容性
- 大规模集群下的指标存储压力
预期收益
该功能的实现将为Volcano用户带来以下价值:
- 提升GPU资源的可视化程度
- 增强资源调度的公平性验证能力
- 为AI工作负载提供更好的资源保障
- 优化集群GPU资源利用率
总结
Volcano项目中增加GPU资源指标监控是支持AI工作负载的重要演进方向。通过扩展监控体系,不仅可以解决当前GPU资源"黑盒"问题,还能为后续的智能调度、自动扩缩容等高级功能奠定基础。建议参考CPU指标的成熟实现,采用统一可扩展的设计方案,逐步完善Volcano在异构计算领域的监控能力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191