Volcano项目GPU队列资源指标扩展需求分析
2025-06-12 05:03:47作者:郜逊炳
背景概述
Volcano作为Kubernetes的批量计算系统,当前版本中主要提供了CPU和内存资源的指标监控功能,包括队列分配量(queue_allocated)和应得资源量(queue_deserved)等核心指标。然而,随着AI/ML工作负载的快速增长,GPU资源已成为批处理任务中的关键计算资源,现有的监控指标体系在GPU资源方面存在明显不足。
当前限制
在现有实现中,Volcano的指标系统主要针对传统计算资源设计:
- 支持CPU资源的毫核级监控(queue_allocated_milli_cpu)
- 支持内存资源的字节级监控
- 提供了队列级别的资源分配和应得指标
但对于GPU这类扩展资源(Extended Resources),系统尚未提供同级别的监控能力,这使得管理员无法准确掌握:
- 各队列实际获得的GPU资源量
- 根据权重配置应得的GPU资源量
- GPU资源的利用率和使用效率
需求分析
AI批处理工作负载的特殊性要求对GPU资源进行精细化监控:
- 资源分配可视化:需要明确每个队列获得的GPU数量,避免资源争用
- 公平调度验证:通过应得指标验证调度器是否按配置权重分配GPU
- 容量规划:基于历史数据评估GPU需求趋势
- 异常检测:识别GPU资源分配异常或利用率过低的情况
技术实现建议
参考现有CPU指标的实现方式,建议采用以下设计方案:
-
统一扩展资源指标:
- 使用通用指标名称如queue_allocated_extended_resources
- 通过资源类型标签区分不同资源(如GPU、FPGA等)
-
GPU特定指标:
- queue_allocated_gpu:已分配GPU数量
- queue_deserved_gpu:应得GPU数量
- 支持整数和分数表示(如1.5个GPU)
-
指标维度:
- 按队列名称区分
- 按GPU类型区分(当集群有多种GPU时)
- 包含时间戳信息
实现考量
在实际开发中需要注意:
- 指标采集频率对系统性能的影响
- 指标命名规范的统一性
- 与现有监控系统的兼容性
- 大规模集群下的指标存储压力
预期收益
该功能的实现将为Volcano用户带来以下价值:
- 提升GPU资源的可视化程度
- 增强资源调度的公平性验证能力
- 为AI工作负载提供更好的资源保障
- 优化集群GPU资源利用率
总结
Volcano项目中增加GPU资源指标监控是支持AI工作负载的重要演进方向。通过扩展监控体系,不仅可以解决当前GPU资源"黑盒"问题,还能为后续的智能调度、自动扩缩容等高级功能奠定基础。建议参考CPU指标的成熟实现,采用统一可扩展的设计方案,逐步完善Volcano在异构计算领域的监控能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
215
235
暂无简介
Dart
662
152
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
253
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
297
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
646
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
217
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编程语言开发者文档。
59
818