Graph-Learning 项目教程
2024-09-28 12:37:32作者:温玫谨Lighthearted
1. 项目目录结构及介绍
Graph-Learning/
├── data/
│ └── blogdata/
├── deepwalk/
├── gat/
├── gcn/
├── graphsage/
├── node2vec/
├── out/
├── pictures/
├── __pycache__/
├── LICENSE
├── README.md
├── __init__.py
├── requirements.txt
目录结构介绍
- data/: 存放项目所需的数据集,例如
blogdata/
目录下存放了博客数据。 - deepwalk/: 包含 DeepWalk 模型的实现代码。
- gat/: 包含 Graph Attention Network (GAT) 模型的实现代码。
- gcn/: 包含 Graph Convolutional Network (GCN) 模型的实现代码。
- graphsage/: 包含 GraphSAGE 模型的实现代码。
- node2vec/: 包含 Node2Vec 模型的实现代码。
- out/: 存放模型输出的结果文件。
- pictures/: 存放项目相关的图片文件。
- pycache/: Python 生成的缓存文件目录。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- init.py: Python 包初始化文件。
- requirements.txt: 项目所需的依赖包列表。
2. 项目启动文件介绍
DeepWalk 启动文件
- deepwalk/main.py: 启动 DeepWalk 模型的主文件。
- deepwalk/node_classification.py: 用于节点分类任务的文件。
Node2Vec 启动文件
- node2vec/main.py: 启动 Node2Vec 模型的主文件。
- node2vec/node_classification.py: 用于节点分类任务的文件。
GCN 启动文件
- gcn/train.py: 启动 GCN 模型的训练文件。
GraphSAGE 启动文件
- graphsage/node_classification/train.py: 启动 GraphSAGE 模型的节点分类训练文件。
- graphsage/link_prediction/train.py: 启动 GraphSAGE 模型的链接预测训练文件。
GAT 启动文件
- gat/train.py: 启动 GAT 模型的训练文件。
3. 项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 依赖包。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
数据配置
项目的数据集需要手动下载并放置在 data/
目录下。例如,博客数据集应放置在 data/blogdata/
目录中。
模型配置
每个模型的配置参数可以在对应的启动文件中进行调整。例如,GCN 模型的训练参数可以在 gcn/train.py
文件中进行配置。
总结
通过本教程,您应该能够了解 Graph-Learning
项目的目录结构、启动文件以及配置文件的使用方法。希望这些信息能够帮助您顺利运行和使用该项目。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0108AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
214
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
979
580

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
96

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399