Graph-Learning 项目教程
2024-09-28 01:49:03作者:温玫谨Lighthearted
1. 项目目录结构及介绍
Graph-Learning/
├── data/
│ └── blogdata/
├── deepwalk/
├── gat/
├── gcn/
├── graphsage/
├── node2vec/
├── out/
├── pictures/
├── __pycache__/
├── LICENSE
├── README.md
├── __init__.py
├── requirements.txt
目录结构介绍
- data/: 存放项目所需的数据集,例如
blogdata/目录下存放了博客数据。 - deepwalk/: 包含 DeepWalk 模型的实现代码。
- gat/: 包含 Graph Attention Network (GAT) 模型的实现代码。
- gcn/: 包含 Graph Convolutional Network (GCN) 模型的实现代码。
- graphsage/: 包含 GraphSAGE 模型的实现代码。
- node2vec/: 包含 Node2Vec 模型的实现代码。
- out/: 存放模型输出的结果文件。
- pictures/: 存放项目相关的图片文件。
- pycache/: Python 生成的缓存文件目录。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- init.py: Python 包初始化文件。
- requirements.txt: 项目所需的依赖包列表。
2. 项目启动文件介绍
DeepWalk 启动文件
- deepwalk/main.py: 启动 DeepWalk 模型的主文件。
- deepwalk/node_classification.py: 用于节点分类任务的文件。
Node2Vec 启动文件
- node2vec/main.py: 启动 Node2Vec 模型的主文件。
- node2vec/node_classification.py: 用于节点分类任务的文件。
GCN 启动文件
- gcn/train.py: 启动 GCN 模型的训练文件。
GraphSAGE 启动文件
- graphsage/node_classification/train.py: 启动 GraphSAGE 模型的节点分类训练文件。
- graphsage/link_prediction/train.py: 启动 GraphSAGE 模型的链接预测训练文件。
GAT 启动文件
- gat/train.py: 启动 GAT 模型的训练文件。
3. 项目的配置文件介绍
requirements.txt
requirements.txt 文件列出了项目运行所需的 Python 依赖包。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
数据配置
项目的数据集需要手动下载并放置在 data/ 目录下。例如,博客数据集应放置在 data/blogdata/ 目录中。
模型配置
每个模型的配置参数可以在对应的启动文件中进行调整。例如,GCN 模型的训练参数可以在 gcn/train.py 文件中进行配置。
总结
通过本教程,您应该能够了解 Graph-Learning 项目的目录结构、启动文件以及配置文件的使用方法。希望这些信息能够帮助您顺利运行和使用该项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895