探索推荐系统的未来:Neural Graph Collaborative Filtering (NGCF)
2024-09-15 04:36:47作者:齐添朝
项目介绍
在推荐系统领域,如何有效地捕捉用户与物品之间的复杂关系一直是一个核心挑战。传统的协同过滤方法往往依赖于用户-物品交互矩阵,但这些方法在处理高维数据和稀疏性问题时表现不佳。为了解决这些问题,Neural Graph Collaborative Filtering (NGCF) 应运而生。NGCF 是一种基于图神经网络(Graph Neural Network, GNN)的新型推荐框架,通过在用户-物品二部图上进行嵌入传播,显式地编码协同信号,从而提升推荐系统的性能。
项目技术分析
NGCF 的核心思想是通过图神经网络来捕捉用户和物品之间的高阶连接性。具体来说,NGCF 通过以下几个步骤实现:
- 嵌入传播:在用户-物品二部图上进行嵌入传播,通过多层图卷积网络(Graph Convolutional Network, GCN)来捕捉用户和物品之间的高阶连接性。
- 消息传递:在每一层中,节点(用户或物品)通过消息传递机制来更新其嵌入表示,从而更好地捕捉协同信号。
- 节点和消息的 dropout:为了防止过拟合,NGCF 引入了节点和消息的 dropout 机制,随机丢弃部分节点和消息,增强模型的鲁棒性。
项目及技术应用场景
NGCF 适用于各种需要个性化推荐的场景,特别是在用户-物品交互数据稀疏且复杂的情况下表现尤为突出。以下是一些典型的应用场景:
- 电子商务:在电商平台上,NGCF 可以帮助用户发现他们可能感兴趣的商品,提升购物体验和销售额。
- 社交媒体:在社交媒体平台上,NGCF 可以根据用户的社交关系和兴趣推荐好友、内容或活动。
- 视频和音乐推荐:在视频和音乐流媒体平台上,NGCF 可以根据用户的观看和收听历史推荐个性化的内容。
项目特点
NGCF 具有以下几个显著特点:
- 高阶连接性捕捉:通过图神经网络,NGCF 能够捕捉用户和物品之间的高阶连接性,从而更准确地预测用户偏好。
- 灵活的图卷积层选择:NGCF 提供了多种图卷积层的选择,包括
ngcf、gcn和gcmc,用户可以根据具体需求选择合适的图卷积层。 - 高效的 dropout 机制:通过节点和消息的 dropout,NGCF 能够有效防止过拟合,提升模型的泛化能力。
- 易于使用的代码实现:项目提供了详细的代码实现和使用说明,用户可以轻松地在不同数据集上进行实验和应用。
结语
Neural Graph Collaborative Filtering (NGCF) 为推荐系统领域带来了新的思路和方法,通过图神经网络的强大能力,NGCF 能够更准确地捕捉用户和物品之间的复杂关系,从而提升推荐系统的性能。无论是在电子商务、社交媒体还是流媒体平台,NGCF 都展现出了巨大的潜力。如果你正在寻找一种高效且灵活的推荐系统解决方案,NGCF 绝对值得一试。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178