探索推荐系统的未来:Neural Graph Collaborative Filtering (NGCF)
2024-09-15 04:36:47作者:齐添朝
项目介绍
在推荐系统领域,如何有效地捕捉用户与物品之间的复杂关系一直是一个核心挑战。传统的协同过滤方法往往依赖于用户-物品交互矩阵,但这些方法在处理高维数据和稀疏性问题时表现不佳。为了解决这些问题,Neural Graph Collaborative Filtering (NGCF) 应运而生。NGCF 是一种基于图神经网络(Graph Neural Network, GNN)的新型推荐框架,通过在用户-物品二部图上进行嵌入传播,显式地编码协同信号,从而提升推荐系统的性能。
项目技术分析
NGCF 的核心思想是通过图神经网络来捕捉用户和物品之间的高阶连接性。具体来说,NGCF 通过以下几个步骤实现:
- 嵌入传播:在用户-物品二部图上进行嵌入传播,通过多层图卷积网络(Graph Convolutional Network, GCN)来捕捉用户和物品之间的高阶连接性。
- 消息传递:在每一层中,节点(用户或物品)通过消息传递机制来更新其嵌入表示,从而更好地捕捉协同信号。
- 节点和消息的 dropout:为了防止过拟合,NGCF 引入了节点和消息的 dropout 机制,随机丢弃部分节点和消息,增强模型的鲁棒性。
项目及技术应用场景
NGCF 适用于各种需要个性化推荐的场景,特别是在用户-物品交互数据稀疏且复杂的情况下表现尤为突出。以下是一些典型的应用场景:
- 电子商务:在电商平台上,NGCF 可以帮助用户发现他们可能感兴趣的商品,提升购物体验和销售额。
- 社交媒体:在社交媒体平台上,NGCF 可以根据用户的社交关系和兴趣推荐好友、内容或活动。
- 视频和音乐推荐:在视频和音乐流媒体平台上,NGCF 可以根据用户的观看和收听历史推荐个性化的内容。
项目特点
NGCF 具有以下几个显著特点:
- 高阶连接性捕捉:通过图神经网络,NGCF 能够捕捉用户和物品之间的高阶连接性,从而更准确地预测用户偏好。
- 灵活的图卷积层选择:NGCF 提供了多种图卷积层的选择,包括
ngcf、gcn和gcmc,用户可以根据具体需求选择合适的图卷积层。 - 高效的 dropout 机制:通过节点和消息的 dropout,NGCF 能够有效防止过拟合,提升模型的泛化能力。
- 易于使用的代码实现:项目提供了详细的代码实现和使用说明,用户可以轻松地在不同数据集上进行实验和应用。
结语
Neural Graph Collaborative Filtering (NGCF) 为推荐系统领域带来了新的思路和方法,通过图神经网络的强大能力,NGCF 能够更准确地捕捉用户和物品之间的复杂关系,从而提升推荐系统的性能。无论是在电子商务、社交媒体还是流媒体平台,NGCF 都展现出了巨大的潜力。如果你正在寻找一种高效且灵活的推荐系统解决方案,NGCF 绝对值得一试。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248