distributions3项目中的泊松分布:从基础理论到回归模型应用
2025-06-19 04:42:23作者:魏献源Searcher
泊松分布基础概念
泊松分布是统计学中用于建模计数数据的经典概率分布,特别适用于描述单位时间或空间内稀有事件发生次数的概率分布。其概率质量函数(PMF)为:
Pr(Y=y) = (e^(-λ) * λ^y) / y!
其中λ > 0是分布的唯一参数,具有以下重要特性:
- 期望值E(Y) = λ
- 方差Var(Y) = λ
- 当二项分布的试验次数n很大而成功概率p很小时,泊松分布可作为其极限近似
- 当λ较大时,泊松分布可近似为正态分布
distributions3中的泊松分布实现
distributions3包提供了简洁的API来创建和操作泊松分布对象:
library(distributions3)
Y <- Poisson(lambda = 1.5) # 创建泊松分布对象
mean(Y) # 计算期望
variance(Y) # 计算方差
pdf(Y, 0:5) # 计算概率质量
cdf(Y, 0:5) # 计算累积分布
random(Y, 5) # 生成随机数
通过plot()方法可以直观展示不同λ值下泊松分布的概率变化规律:
par(mfrow = c(2, 2))
plot(Poisson(0.5), main = "λ=0.5", xlim = c(0, 15))
plot(Poisson(2), main = "λ=2", xlim = c(0, 15))
plot(Poisson(5), main = "λ=5", xlim = c(0, 15))
plot(Poisson(10), main = "λ=10", xlim = c(0, 15))
实际案例:2018世界杯进球分析
数据概览
使用FIFA2018数据集分析世界杯比赛进球数,每条记录包含:
- 比赛ID和阶段(小组赛/淘汰赛)
- 球队信息
- 进球数(goals)
- 球队能力值(logability)
数据摘要显示,单场球队进球数分布在0-6之间,平均约1.3球。
简单泊松拟合
首先假设所有球队进球率相同,用样本均值估计λ:
p_const <- Poisson(lambda = mean(FIFA2018$goals))
比较观测频率与理论概率:
observed <- prop.table(table(FIFA2018$goals))
expected <- pdf(p_const, 0:6)
cbind(observed, expected)
结果显示简单泊松模型已能较好拟合数据,但忽略了球队实力差异。
泊松回归模型
引入球队能力差异作为预测变量,建立广义线性模型:
m <- glm(goals ~ difference, data = FIFA2018, family = poisson)
模型解读:
- 截距项(1.21):实力相当球队比赛的预期log进球数
- 斜率(0.005):能力差异每增加1%,预期进球增加约0.005%
预测应用
对决赛(法国vs克罗地亚)进行预测:
p_final <- tail(Poisson(lambda = fitted(m)), 2)
pdf(p_final, 0:6)
计算各种比分组合概率:
res <- outer(pdf(p_final[1], 0:6), pdf(p_final[2], 0:6))
sum(res[lower.tri(res)]) # 法国胜概率
sum(diag(res)) # 平局概率
sum(res[upper.tri(res)]) # 法国负概率
模型评估
使用悬挂根图(hanging rootogram)可视化拟合优度:
bp <- barplot(sqrt(observed), offset = sqrt(expected)-sqrt(observed))
lines(bp, sqrt(expected), type="o", col=2)
技术细节:最大似然估计
对于独立同分布样本y₁,...,yₙ,泊松分布的似然函数为:
L(λ) = ∏(e^(-λ)*λ^yᵢ/yᵢ!)
对数似然函数:
ℓ(λ) = -nλ + log(λ)∑yᵢ - ∑log(yᵢ!)
通过求解ℓ'(λ)=0可得MLE估计量:
̂λ = (1/n)∑yᵢ = ȳ
对于包含协变量的泊松回归模型,需使用迭代加权最小二乘法等数值方法求解。
扩展应用
实际应用中可考虑:
- 使用历史数据先验校准模型参数
- 加入更多预测变量(如主客场、伤病情况等)
- 采用更复杂的机器学习方法
- 考虑双变量泊松分布处理比分相关性
泊松分布在计数数据分析中具有基础性地位,distributions3包提供了便捷的实现工具,特别适合教学演示和快速原型开发。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K