distributions3项目中的双样本Z检验详解
前言
在统计学中,Z检验是一种常用的假设检验方法,用于比较样本均值与总体均值或两个样本均值之间的差异。本文将基于distributions3项目中的双样本Z检验案例,详细介绍其原理、实现步骤和实际应用。
案例背景
假设一位学生想研究生物学教授和英语教授谁更了解网络流行文化(memes)。为此,该学生设计了一份meme知识测试问卷,并分别对14位生物学教授和18位英语教授进行了测试。
生物学教授得分如下: 3, 7, 11, 0, 7, 0, 4, 5, 6, 2, 4, 7, 2, 9
英语教授得分如下: 5, 5, 4, 5, 4, 5, 7, 2, 6, 2, 2, 7, 2, 6, 4, 2, 5, 2
已知生物学教授得分的总体方差σ²₁=3,英语教授得分的总体方差σ²₂=2。
正态性检验
在进行Z检验前,我们需要确认样本均值是否服从正态分布。根据中心极限定理,当样本量足够大(通常认为n≥30)时,样本均值近似服从正态分布。但本例中两个样本量都小于30,因此需要进行正态性检验。
Q-Q图检验
我们使用正态分位数-分位数图(Q-Q图)来检验数据是否来自正态分布:
biology <- c(3, 7, 11, 0, 7, 0, 4, 5, 6, 2, 4, 7, 2, 9)
english <- c(8, 5, 4, 10, 4, 5, 7, 2, 6, 1, 2, 7, 0, 6, 4, 12, 5, 2)
qqnorm(biology)
qqline(biology)
qqnorm(english)
qqline(english)
从Q-Q图可以看出,两组数据点都基本落在参考线附近,没有明显的系统性偏离,因此可以认为两组数据都近似服从正态分布。
箱线图可视化
我们还可以使用箱线图直观比较两组数据:
library(ggplot2)
test_results <- data.frame(
score = c(biology, english),
department = c(
rep("biology", length(biology)),
rep("english", length(english))
)
ggplot(test_results, aes(x = department, y = score, color = department)) +
geom_boxplot() +
geom_jitter() +
scale_color_brewer(type = "qual", palette = 2) +
theme_minimal() +
theme(legend.position = "none")
从箱线图可以看出,两组数据的分布中心(中位数)和离散程度都比较接近,初步判断两组均值可能没有显著差异。
假设检验
建立假设
我们设定:
- 零假设H₀:μ₁ - μ₂ = 0(两组均值无差异)
- 备择假设H₁:μ₁ - μ₂ ≠ 0(两组均值有差异)
计算Z统计量
双样本Z检验的统计量公式为:
Z = (x̄₁ - x̄₂ - δ₀) / √(σ₁²/n₁ + σ₂²/n₂)
其中δ₀为假设的均值差(本例中为0),σ₁²和σ₂²为已知的总体方差,n₁和n₂为样本量。
在R中计算:
delta_0 <- 0
sigma_sq_1 <- 3
sigma_sq_2 <- 2
n_1 <- length(biology)
n_2 <- length(english)
z_stat <- (mean(biology) - mean(english) - delta_0) /
sqrt(sigma_sq_1 / n_1 + sigma_sq_2 / n_2)
计算得到的Z统计量约为-0.376。
p值计算
对于双侧检验,p值为P(|Z| ≥ |z_stat|)。使用distributions3包计算:
library(distributions3)
Z <- Normal(0, 1) # 标准正态分布
# 方法1
1 - cdf(Z, abs(z_stat)) + cdf(Z, -abs(z_stat))
# 方法2:利用对称性
2 * cdf(Z, -abs(z_stat))
两种方法得到的p值约为0.707,远大于常用的显著性水平0.05,因此不能拒绝零假设,即没有足够证据表明两组教授的meme知识水平存在显著差异。
单侧检验
有时我们可能需要进行单侧检验:
-
检验生物学教授得分是否显著高于英语教授: H₀: μ₁ ≤ μ₂ vs H₁: μ₁ > μ₂ p值 = P(Z > z_stat) = 1 - cdf(Z, z_stat)
-
检验生物学教授得分是否显著低于英语教授: H₀: μ₁ ≥ μ₂ vs H₁: μ₁ < μ₂ p值 = P(Z < z_stat) = cdf(Z, z_stat)
实际应用中的注意事项
-
方差已知:Z检验要求总体方差已知,这在实际情况中比较少见。如果方差未知,应该使用t检验。
-
样本独立性:两个样本必须相互独立,不能是配对或相关样本。
-
正态性假设:当样本量较小时,需要验证数据是否来自正态分布;样本量大时(n≥30),根据中心极限定理可放宽此要求。
-
效应量:除了p值,还应考虑差异的实际大小(效应量),这有助于判断差异的实际意义。
总结
通过distributions3项目中的双样本Z检验案例,我们学习了如何:
- 进行正态性检验
- 建立统计假设
- 计算Z统计量
- 计算并解释p值
- 区分双侧和单侧检验
在实际研究中,当满足Z检验的前提条件时,它是一种简单有效的均值比较方法。但需要注意检查假设条件,并根据研究问题选择合适的检验类型(单侧/双侧)。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00