使用distributions3包进行单样本符号检验分析
2025-06-19 19:33:35作者:谭伦延
引言
在统计学分析中,我们经常需要对数据的中位数进行假设检验。当数据不满足正态分布假设或存在异常值时,传统的Z检验或T检验就不再适用。这时,符号检验(Sign Test)就成为一种稳健的非参数检验方法。本文将介绍如何使用distributions3包实现单样本符号检验。
符号检验的基本原理
符号检验是一种非参数统计方法,用于检验样本中位数是否等于某个特定值。它的主要优点是:
- 不依赖于数据分布的具体形式
- 对异常值不敏感
- 计算简单直观
符号检验的基本思想是:如果样本中位数确实等于假设值,那么样本中大于假设值的数据点数量应该大约等于小于假设值的数据点数量。
实际案例:收入数据分析
假设我们在某地进行收入调查,收集到以下收入数据(单位:美元):
8478, 21564, 36562, 176602, 9395, 18320, 50000,
2, 40298, 39, 10780, 2268583, 3404930
首先我们通过QQ图来观察数据的分布情况:
incomes <- c(8478, 21564, 36562, 176602, 9395, 18320, 50000,
2, 40298, 39, 10780, 2268583, 3404930)
qqnorm(incomes)
qqline(incomes)
从图中可以明显看出数据存在极端异常值,不符合正态分布假设,因此符号检验是更合适的选择。
假设检验步骤
1. 设定假设
我们想检验收入中位数是否等于50,000美元:
- 原假设H₀: m = 50,000
- 备择假设H₁: m ≠ 50,000
2. 计算检验统计量
符号检验的统计量B定义为大于假设中位数的数据点数量。对于精确等于中位数的数据点,应从样本中剔除。
b <- sum(incomes > 50000) # 大于中位数的点数
n <- sum(incomes != 50000) # 有效样本量(剔除等于中位数的点)
3. 确定统计量的分布
在H₀成立时,B ~ Binomial(n, 0.5)。我们可以使用distributions3包来创建这个二项分布:
library(distributions3)
X <- Binomial(n, 0.5)
4. 计算p值
对于双侧检验,p值为:
2 * min(cdf(X, b), 1 - cdf(X, b - 1))
单侧检验的实现
有时我们可能需要单侧检验:
- 检验中位数是否大于某个值:
1 - cdf(X, b - 1) # P(B > b)
- 检验中位数是否小于某个值:
cdf(X, b) # P(B ≤ b)
与R基础函数的比较
为了验证我们的结果,可以使用R内置的binom.test函数:
# 双侧检验
binom.test(b, n = n, p = 0.5)
# 右侧检验(中位数大于)
binom.test(b, n = n, p = 0.5, alternative = "greater")
# 左侧检验(中位数小于)
binom.test(b, n = n, p = 0.5, alternative = "less")
符号检验的优缺点
优点
- 对分布没有严格要求
- 对异常值稳健
- 计算简单,易于理解
缺点
- 检验效能较低(需要较大样本量)
- 只利用了数据的中位数信息,忽略了其他信息
实际应用建议
- 当数据明显偏离正态分布时,优先考虑符号检验
- 对于小样本数据,符号检验是可靠的选择
- 报告中应同时提供点估计和置信区间
- 考虑使用其他非参数方法(如Wilcoxon符号秩检验)作为补充
结语
distributions3包为符号检验提供了简洁的实现方式,特别适合教学和快速原型开发。通过本文的介绍,希望读者能够掌握符号检验的基本原理和实现方法,在实际数据分析中合理应用这一工具。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19