PyTorch Vision 项目使用教程
2024-08-07 07:58:28作者:卓炯娓
1. 项目的目录结构及介绍
PyTorch Vision 项目的目录结构如下:
vision/
├── docs/
├── examples/
├── tests/
├── torchvision/
│ ├── datasets/
│ ├── models/
│ ├── ops/
│ ├── transforms/
│ └── utils/
├── setup.py
└── README.md
目录介绍
docs/: 包含项目的文档文件。examples/: 包含使用 PyTorch Vision 的示例代码。tests/: 包含项目的测试代码。torchvision/: 核心代码目录,包含以下子目录:datasets/: 包含各种数据集的实现。models/: 包含各种预训练模型的实现。ops/: 包含自定义的算子。transforms/: 包含数据预处理和增强的转换方法。utils/: 包含各种实用工具函数。
setup.py: 项目的安装脚本。README.md: 项目的介绍和使用说明。
2. 项目的启动文件介绍
PyTorch Vision 项目没有特定的启动文件,因为它主要提供了一系列的模块和函数供用户在自己的项目中调用。用户可以根据需要导入 torchvision 中的模块和函数来使用。
例如,导入并使用预训练模型:
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
3. 项目的配置文件介绍
PyTorch Vision 项目没有特定的配置文件,因为它主要依赖于 PyTorch 的配置和用户自定义的参数。用户可以通过代码来设置所需的参数和配置。
例如,设置数据集和数据增强:
import torchvision.datasets as datasets
import torchvision.transforms as transforms
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
dataset = datasets.ImageFolder(root='path/to/dataset', transform=transform)
以上是 PyTorch Vision 项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
270
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869