Optax项目中使用LBFGS优化器结合线搜索的实践指南
2025-07-07 15:59:10作者:戚魁泉Nursing
背景介绍
在机器学习模型训练过程中,二阶优化算法因其收敛速度快的特点受到广泛关注。L-BFGS作为经典的拟牛顿法优化算法,在深度学习领域也有重要应用。Google DeepMind开发的Optax库提供了LBFGS优化器的实现,并支持线搜索功能,能够进一步提升优化效果。
核心问题
当在Equinox框架下构建自定义模型时,如何正确使用Optax的LBFGS优化器并启用线搜索功能,需要特别注意几个关键点:
- 线搜索需要单独定义纯损失函数(value_fn),而非同时计算值和梯度的函数
- 在Equinox框架下需要正确处理模型的可微分和不可微分部分
- 参数更新时需要保持模型结构的完整性
解决方案详解
1. 定义纯损失函数
线搜索算法需要一个仅返回损失值的函数,因此我们需要单独定义:
def loss_fn(model, ts, ys_true):
y0 = jnp.array([0.0])
y_pred = model(ts, y0)
return jnp.mean((y_pred - ys_true) ** 2)
这与常见的value_and_grad函数不同,后者会同时返回损失值和梯度。
2. 模型参数处理
在Equinox框架下,我们需要区分模型的可微分和不可微分部分:
model_params, model_struct = eqx.partition(model, eqx.is_array)
这种分割确保了在优化过程中只更新可训练参数,同时保持模型结构不变。
3. 创建线搜索兼容的损失函数
为了在线搜索中使用,我们需要创建一个闭包函数,将当前模型结构和输入数据绑定:
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
这个lambda函数将模型参数与固定结构重新组合,确保每次线搜索评估时模型结构保持一致。
4. 优化步骤实现
完整的训练步骤实现如下:
@eqx.filter_jit
def make_step(ti, yi, model, opt_state):
# 计算损失和梯度
loss, grads = eqx.filter_value_and_grad(loss_fn)(model, ti, yi)
# 准备优化器输入
grads = eqx.filter(grads, eqx.is_array)
opt_state = eqx.filter(opt_state, eqx.is_array)
model_params, model_struct = eqx.partition(model, eqx.is_array)
# 创建线搜索兼容的损失函数
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
# 执行优化步骤
updates, opt_state = optim.update(
grads, opt_state, model_params,
value=loss, grad=grads, value_fn=loss_fn_)
# 更新模型
model = eqx.apply_updates(model, updates)
return loss, model, opt_state
关键注意事项
- 函数类型匹配:确保传递给线搜索的是纯损失函数,而非value_and_grad函数
- 模型完整性:在参数更新前后保持模型结构的完整性
- 性能考量:线搜索会增加每次迭代的计算量,但通常能减少总迭代次数
- 学习率设置:即使启用了线搜索,初始学习率的设置仍然会影响优化效果
实际应用建议
对于科学计算和物理信息神经网络(PINN)等场景,LBFGS+线搜索的组合往往能取得比一阶优化器更好的效果。建议:
- 先使用Adam等一阶优化器进行预训练
- 切换到LBFGS进行精细优化
- 监控线搜索的接受率,调整初始学习率
通过合理使用Optax提供的LBFGS实现,可以在保持代码简洁的同时,获得接近二阶优化算法的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146