Optax项目中使用LBFGS优化器结合线搜索的实践指南
2025-07-07 05:32:40作者:戚魁泉Nursing
背景介绍
在机器学习模型训练过程中,二阶优化算法因其收敛速度快的特点受到广泛关注。L-BFGS作为经典的拟牛顿法优化算法,在深度学习领域也有重要应用。Google DeepMind开发的Optax库提供了LBFGS优化器的实现,并支持线搜索功能,能够进一步提升优化效果。
核心问题
当在Equinox框架下构建自定义模型时,如何正确使用Optax的LBFGS优化器并启用线搜索功能,需要特别注意几个关键点:
- 线搜索需要单独定义纯损失函数(value_fn),而非同时计算值和梯度的函数
- 在Equinox框架下需要正确处理模型的可微分和不可微分部分
- 参数更新时需要保持模型结构的完整性
解决方案详解
1. 定义纯损失函数
线搜索算法需要一个仅返回损失值的函数,因此我们需要单独定义:
def loss_fn(model, ts, ys_true):
y0 = jnp.array([0.0])
y_pred = model(ts, y0)
return jnp.mean((y_pred - ys_true) ** 2)
这与常见的value_and_grad函数不同,后者会同时返回损失值和梯度。
2. 模型参数处理
在Equinox框架下,我们需要区分模型的可微分和不可微分部分:
model_params, model_struct = eqx.partition(model, eqx.is_array)
这种分割确保了在优化过程中只更新可训练参数,同时保持模型结构不变。
3. 创建线搜索兼容的损失函数
为了在线搜索中使用,我们需要创建一个闭包函数,将当前模型结构和输入数据绑定:
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
这个lambda函数将模型参数与固定结构重新组合,确保每次线搜索评估时模型结构保持一致。
4. 优化步骤实现
完整的训练步骤实现如下:
@eqx.filter_jit
def make_step(ti, yi, model, opt_state):
# 计算损失和梯度
loss, grads = eqx.filter_value_and_grad(loss_fn)(model, ti, yi)
# 准备优化器输入
grads = eqx.filter(grads, eqx.is_array)
opt_state = eqx.filter(opt_state, eqx.is_array)
model_params, model_struct = eqx.partition(model, eqx.is_array)
# 创建线搜索兼容的损失函数
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
# 执行优化步骤
updates, opt_state = optim.update(
grads, opt_state, model_params,
value=loss, grad=grads, value_fn=loss_fn_)
# 更新模型
model = eqx.apply_updates(model, updates)
return loss, model, opt_state
关键注意事项
- 函数类型匹配:确保传递给线搜索的是纯损失函数,而非value_and_grad函数
- 模型完整性:在参数更新前后保持模型结构的完整性
- 性能考量:线搜索会增加每次迭代的计算量,但通常能减少总迭代次数
- 学习率设置:即使启用了线搜索,初始学习率的设置仍然会影响优化效果
实际应用建议
对于科学计算和物理信息神经网络(PINN)等场景,LBFGS+线搜索的组合往往能取得比一阶优化器更好的效果。建议:
- 先使用Adam等一阶优化器进行预训练
- 切换到LBFGS进行精细优化
- 监控线搜索的接受率,调整初始学习率
通过合理使用Optax提供的LBFGS实现,可以在保持代码简洁的同时,获得接近二阶优化算法的性能表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1