Optax项目中使用LBFGS优化器结合线搜索的实践指南
2025-07-07 02:40:35作者:戚魁泉Nursing
背景介绍
在机器学习模型训练过程中,二阶优化算法因其收敛速度快的特点受到广泛关注。L-BFGS作为经典的拟牛顿法优化算法,在深度学习领域也有重要应用。Google DeepMind开发的Optax库提供了LBFGS优化器的实现,并支持线搜索功能,能够进一步提升优化效果。
核心问题
当在Equinox框架下构建自定义模型时,如何正确使用Optax的LBFGS优化器并启用线搜索功能,需要特别注意几个关键点:
- 线搜索需要单独定义纯损失函数(value_fn),而非同时计算值和梯度的函数
- 在Equinox框架下需要正确处理模型的可微分和不可微分部分
- 参数更新时需要保持模型结构的完整性
解决方案详解
1. 定义纯损失函数
线搜索算法需要一个仅返回损失值的函数,因此我们需要单独定义:
def loss_fn(model, ts, ys_true):
y0 = jnp.array([0.0])
y_pred = model(ts, y0)
return jnp.mean((y_pred - ys_true) ** 2)
这与常见的value_and_grad函数不同,后者会同时返回损失值和梯度。
2. 模型参数处理
在Equinox框架下,我们需要区分模型的可微分和不可微分部分:
model_params, model_struct = eqx.partition(model, eqx.is_array)
这种分割确保了在优化过程中只更新可训练参数,同时保持模型结构不变。
3. 创建线搜索兼容的损失函数
为了在线搜索中使用,我们需要创建一个闭包函数,将当前模型结构和输入数据绑定:
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
这个lambda函数将模型参数与固定结构重新组合,确保每次线搜索评估时模型结构保持一致。
4. 优化步骤实现
完整的训练步骤实现如下:
@eqx.filter_jit
def make_step(ti, yi, model, opt_state):
# 计算损失和梯度
loss, grads = eqx.filter_value_and_grad(loss_fn)(model, ti, yi)
# 准备优化器输入
grads = eqx.filter(grads, eqx.is_array)
opt_state = eqx.filter(opt_state, eqx.is_array)
model_params, model_struct = eqx.partition(model, eqx.is_array)
# 创建线搜索兼容的损失函数
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
# 执行优化步骤
updates, opt_state = optim.update(
grads, opt_state, model_params,
value=loss, grad=grads, value_fn=loss_fn_)
# 更新模型
model = eqx.apply_updates(model, updates)
return loss, model, opt_state
关键注意事项
- 函数类型匹配:确保传递给线搜索的是纯损失函数,而非value_and_grad函数
- 模型完整性:在参数更新前后保持模型结构的完整性
- 性能考量:线搜索会增加每次迭代的计算量,但通常能减少总迭代次数
- 学习率设置:即使启用了线搜索,初始学习率的设置仍然会影响优化效果
实际应用建议
对于科学计算和物理信息神经网络(PINN)等场景,LBFGS+线搜索的组合往往能取得比一阶优化器更好的效果。建议:
- 先使用Adam等一阶优化器进行预训练
- 切换到LBFGS进行精细优化
- 监控线搜索的接受率,调整初始学习率
通过合理使用Optax提供的LBFGS实现,可以在保持代码简洁的同时,获得接近二阶优化算法的性能表现。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K