Optax项目中LBFGS优化器与线搜索在自定义类中的应用实践
2025-07-07 21:31:15作者:田桥桑Industrious
背景介绍
在机器学习模型训练过程中,优化算法的选择对模型性能有着重要影响。Optax作为JAX生态中的优化库,提供了多种优化算法实现。其中L-BFGS算法因其优秀的收敛特性,特别适合中小规模问题的优化。本文将重点探讨如何在自定义神经网络模型中使用Optax的LBFGS优化器,并配合线搜索功能实现更高效的参数优化。
核心问题分析
当开发者尝试在自定义神经网络类中使用LBFGS优化器时,常会遇到以下技术难点:
- 参数处理复杂性:自定义类通常包含可训练参数和静态参数,需要正确处理
- 线搜索接口适配:线搜索需要特定的值函数接口,与常规训练循环不同
- 模型结构保持:优化过程中需要保持模型的非可训练部分结构不变
解决方案实现
1. 损失函数重构
首先需要将损失函数从"值+梯度"形式重构为纯值函数形式:
def loss_fn(model, ts, ys_true):
y0 = jnp.array([0.0])
y_pred = model(ts, y0)
return jnp.mean((y_pred - ys_true) ** 2)
2. 参数分区处理
使用Equinox的partition和combine方法分离可训练参数和模型结构:
model_params, model_struct = eqx.partition(model, eqx.is_array)
3. 线搜索适配
创建适配线搜索的lambda函数,确保在每次评估时都能正确组合模型参数和结构:
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
4. 完整训练步骤
整合上述组件形成完整的训练步骤:
@eqx.filter_jit
def make_step(ti, yi, model, opt_state):
loss, grads = eqx.filter_value_and_grad(loss_fn)(model, ti, yi)
grads = eqx.filter(grads, eqx.is_array)
opt_state = eqx.filter(opt_state, eqx.is_array)
model_params, model_struct = eqx.partition(model, eqx.is_array)
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
updates, opt_state = optim.update(
grads, opt_state, model_params,
value=loss, grad=grads, value_fn=loss_fn_)
model = eqx.apply_updates(model, updates)
return loss, model, opt_state
技术要点解析
- 参数分区的重要性:确保在优化过程中只更新可训练参数,保持模型结构不变
- 线搜索机制:LBFGS的线搜索需要纯值函数来评估不同步长下的损失值
- JIT编译兼容:使用
eqx.filter_jit确保整个步骤可以被JAX正确编译优化 - 梯度处理:明确区分可训练参数的梯度和模型的其他部分
实际应用建议
- 对于中小规模问题,LBFGS+线搜索通常能获得更好的收敛性
- 监控线搜索过程中的函数评估次数,避免不必要的计算开销
- 考虑结合学习率调度器来动态调整初始步长
- 对于大规模问题,可能需要改用随机优化方法或有限内存LBFGS变种
总结
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250