Optax项目中LBFGS优化器与线搜索在自定义类中的应用实践
2025-07-07 21:31:15作者:田桥桑Industrious
背景介绍
在机器学习模型训练过程中,优化算法的选择对模型性能有着重要影响。Optax作为JAX生态中的优化库,提供了多种优化算法实现。其中L-BFGS算法因其优秀的收敛特性,特别适合中小规模问题的优化。本文将重点探讨如何在自定义神经网络模型中使用Optax的LBFGS优化器,并配合线搜索功能实现更高效的参数优化。
核心问题分析
当开发者尝试在自定义神经网络类中使用LBFGS优化器时,常会遇到以下技术难点:
- 参数处理复杂性:自定义类通常包含可训练参数和静态参数,需要正确处理
- 线搜索接口适配:线搜索需要特定的值函数接口,与常规训练循环不同
- 模型结构保持:优化过程中需要保持模型的非可训练部分结构不变
解决方案实现
1. 损失函数重构
首先需要将损失函数从"值+梯度"形式重构为纯值函数形式:
def loss_fn(model, ts, ys_true):
y0 = jnp.array([0.0])
y_pred = model(ts, y0)
return jnp.mean((y_pred - ys_true) ** 2)
2. 参数分区处理
使用Equinox的partition和combine方法分离可训练参数和模型结构:
model_params, model_struct = eqx.partition(model, eqx.is_array)
3. 线搜索适配
创建适配线搜索的lambda函数,确保在每次评估时都能正确组合模型参数和结构:
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
4. 完整训练步骤
整合上述组件形成完整的训练步骤:
@eqx.filter_jit
def make_step(ti, yi, model, opt_state):
loss, grads = eqx.filter_value_and_grad(loss_fn)(model, ti, yi)
grads = eqx.filter(grads, eqx.is_array)
opt_state = eqx.filter(opt_state, eqx.is_array)
model_params, model_struct = eqx.partition(model, eqx.is_array)
loss_fn_ = lambda model_params: loss_fn(
eqx.combine(model_params, model_struct), ti, yi)
updates, opt_state = optim.update(
grads, opt_state, model_params,
value=loss, grad=grads, value_fn=loss_fn_)
model = eqx.apply_updates(model, updates)
return loss, model, opt_state
技术要点解析
- 参数分区的重要性:确保在优化过程中只更新可训练参数,保持模型结构不变
- 线搜索机制:LBFGS的线搜索需要纯值函数来评估不同步长下的损失值
- JIT编译兼容:使用
eqx.filter_jit确保整个步骤可以被JAX正确编译优化 - 梯度处理:明确区分可训练参数的梯度和模型的其他部分
实际应用建议
- 对于中小规模问题,LBFGS+线搜索通常能获得更好的收敛性
- 监控线搜索过程中的函数评估次数,避免不必要的计算开销
- 考虑结合学习率调度器来动态调整初始步长
- 对于大规模问题,可能需要改用随机优化方法或有限内存LBFGS变种
总结
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694