Optax项目中L-BFGS优化器使用问题深度解析
2025-07-07 05:49:39作者:羿妍玫Ivan
背景介绍
Optax是Google DeepMind开发的一个基于JAX的优化库,提供了多种优化算法的实现。L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)是一种准牛顿优化方法,特别适合解决大规模非线性优化问题。
问题现象
用户在从Jaxopt迁移到Optax时,发现Optax实现的L-BFGS优化器与Jaxopt版本存在差异,主要表现为:
- 在某些情况下损失函数会出现非单调下降的情况
- 优化过程中可能出现损失值突然增加("spikes")
- 在元学习场景下,由于使用
jax.lax.while_loop实现,无法进行反向传播
技术分析
实现差异
Optax和Jaxopt的L-BFGS实现存在几个关键区别:
- 初始步长选择:Optax默认在每次迭代中使用步长1作为初始猜测,而Jaxopt可能有不同的策略
- 梯度处理:Optax在第一次迭代时会对梯度进行裁剪
- 线搜索实现:两个库使用的默认线搜索算法可能不同
损失增加问题
当观察到损失函数非单调下降时,通常与线搜索配置有关:
- 最大线搜索步数不足:
max_linesearch_steps参数设置过小可能导致线搜索无法找到合适的步长 - 梯度不匹配:如果在L-BFGS外部对梯度进行了处理(如裁剪),但
value_fn没有相应调整,会导致优化方向不正确 - 数值稳定性:某些情况下,梯度裁剪可能使搜索方向不再是下降方向
元学习场景限制
在元学习中使用L-BFGS作为内部优化器时,会遇到以下挑战:
- 不可微分问题:由于使用
jax.lax.while_loop实现,无法直接进行反向传播 - 替代方案:
- 使用隐函数定理和自定义JVP实现
- 考虑使用支持可微分while循环的库如Optimistix
解决方案与最佳实践
-
线搜索配置:
- 适当增加
max_linesearch_steps参数 - 启用verbose模式监控线搜索过程
- 确保传递给优化器的梯度与目标函数一致
- 适当增加
-
梯度处理:
- 避免在L-BFGS外部单独处理梯度
- 如需梯度裁剪,应在
value_fn中保持一致处理
-
元学习场景:
- 考虑使用SGD等可微分优化器作为内部优化器
- 如必须使用L-BFGS,可参考Jaxopt实现自定义可微分版本
示例代码修正
对于简单优化问题,正确的L-BFGS使用方式如下:
def fun(x):
return jnp.sum(x**2)
x = jnp.array([1.0, 2.0, 3.0])
opt = optax.lbfgs(max_linesearch_steps=20) # 增加线搜索步数
opt_state = opt.init(x)
for i in range(20):
value, grad = jax.value_and_grad(fun)(x)
updates, opt_state = opt.update(
grad, opt_state, x,
grad=grad, value=value,
value_fn=fun
)
x = optax.apply_updates(x, updates)
总结
Optax中的L-BFGS实现是一个高效的优化器,但在使用时需要注意其与Jaxopt的实现差异。特别是在线搜索配置和梯度处理方面需要格外小心。对于元学习等需要反向传播的场景,可能需要考虑替代方案或自定义实现。理解这些底层细节有助于更好地利用Optax进行优化任务。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1