Optax项目中L-BFGS优化器使用问题深度解析
2025-07-07 23:19:06作者:羿妍玫Ivan
背景介绍
Optax是Google DeepMind开发的一个基于JAX的优化库,提供了多种优化算法的实现。L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)是一种准牛顿优化方法,特别适合解决大规模非线性优化问题。
问题现象
用户在从Jaxopt迁移到Optax时,发现Optax实现的L-BFGS优化器与Jaxopt版本存在差异,主要表现为:
- 在某些情况下损失函数会出现非单调下降的情况
- 优化过程中可能出现损失值突然增加("spikes")
- 在元学习场景下,由于使用
jax.lax.while_loop
实现,无法进行反向传播
技术分析
实现差异
Optax和Jaxopt的L-BFGS实现存在几个关键区别:
- 初始步长选择:Optax默认在每次迭代中使用步长1作为初始猜测,而Jaxopt可能有不同的策略
- 梯度处理:Optax在第一次迭代时会对梯度进行裁剪
- 线搜索实现:两个库使用的默认线搜索算法可能不同
损失增加问题
当观察到损失函数非单调下降时,通常与线搜索配置有关:
- 最大线搜索步数不足:
max_linesearch_steps
参数设置过小可能导致线搜索无法找到合适的步长 - 梯度不匹配:如果在L-BFGS外部对梯度进行了处理(如裁剪),但
value_fn
没有相应调整,会导致优化方向不正确 - 数值稳定性:某些情况下,梯度裁剪可能使搜索方向不再是下降方向
元学习场景限制
在元学习中使用L-BFGS作为内部优化器时,会遇到以下挑战:
- 不可微分问题:由于使用
jax.lax.while_loop
实现,无法直接进行反向传播 - 替代方案:
- 使用隐函数定理和自定义JVP实现
- 考虑使用支持可微分while循环的库如Optimistix
解决方案与最佳实践
-
线搜索配置:
- 适当增加
max_linesearch_steps
参数 - 启用verbose模式监控线搜索过程
- 确保传递给优化器的梯度与目标函数一致
- 适当增加
-
梯度处理:
- 避免在L-BFGS外部单独处理梯度
- 如需梯度裁剪,应在
value_fn
中保持一致处理
-
元学习场景:
- 考虑使用SGD等可微分优化器作为内部优化器
- 如必须使用L-BFGS,可参考Jaxopt实现自定义可微分版本
示例代码修正
对于简单优化问题,正确的L-BFGS使用方式如下:
def fun(x):
return jnp.sum(x**2)
x = jnp.array([1.0, 2.0, 3.0])
opt = optax.lbfgs(max_linesearch_steps=20) # 增加线搜索步数
opt_state = opt.init(x)
for i in range(20):
value, grad = jax.value_and_grad(fun)(x)
updates, opt_state = opt.update(
grad, opt_state, x,
grad=grad, value=value,
value_fn=fun
)
x = optax.apply_updates(x, updates)
总结
Optax中的L-BFGS实现是一个高效的优化器,但在使用时需要注意其与Jaxopt的实现差异。特别是在线搜索配置和梯度处理方面需要格外小心。对于元学习等需要反向传播的场景,可能需要考虑替代方案或自定义实现。理解这些底层细节有助于更好地利用Optax进行优化任务。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133