首页
/ Mean Average Precision (mAP) 开源项目教程

Mean Average Precision (mAP) 开源项目教程

2024-09-01 12:44:51作者:瞿蔚英Wynne

1、项目介绍

Mean Average Precision (mAP) 是一个用于评估对象检测模型性能的开源项目。mAP 是对象检测和分割系统分析中常用的指标,广泛应用于 Faster R-CNN、MobileNet、SSD 和 YOLO 等算法。该项目提供了计算 mAP 的工具和方法,帮助开发者准确评估其模型的性能。

2、项目快速启动

安装

首先,克隆项目仓库到本地:

git clone https://github.com/bes-dev/mean_average_precision.git
cd mean_average_precision

然后,安装所需的依赖包:

pip install -r requirements.txt

使用示例

以下是一个简单的使用示例,展示如何计算 mAP:

import numpy as np
from mean_average_precision import MetricBuilder

# 定义真实标签和预测结果
gt = np.array([
    [439, 157, 556, 241, 0, 0, 0],
    [437, 246, 518, 351, 0, 0, 0],
    [515, 306, 595, 375, 0, 0, 0],
    [407, 386, 531, 476, 0, 0, 0],
    [544, 419, 621, 476, 0, 0, 0],
    [609, 297, 636, 392, 0, 0, 0]
])

preds = np.array([
    [429, 219, 528, 247, 0, 0.460851],
    [433, 260, 506, 336, 0, 0.269833],
    [518, 314, 603, 369, 0, 0.462608],
    [592, 310, 634, 388, 0, 0.298196],
    [403, 384, 517, 461, 0, 0.382881],
    [405, 429, 519, 470, 0, 0.369369],
    [433, 272, 499, 341, 0, 0.272826],
    [413, 390, 515, 459, 0, 0.619459]
])

# 创建评估指标函数
metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True)

# 添加真实标签和预测结果
metric_fn.add(preds, gt)

# 计算 mAP
mAP = metric_fn.value(iou_thresholds=0.5)
print(f"mAP: {mAP}")

3、应用案例和最佳实践

应用案例

  • 自动驾驶:在自动驾驶系统中,mAP 用于评估车辆检测和行人检测模型的性能。
  • 医学图像分析:在医学图像分析中,mAP 用于评估肿瘤检测和病变识别模型的性能。

最佳实践

  • 数据集准备:确保数据集的质量和多样性,以提高模型的泛化能力。
  • 模型调优:通过调整模型参数和结构,优化模型的性能。
  • 交叉验证:使用交叉验证方法,确保模型的稳定性和可靠性。

4、典型生态项目

  • TensorFlow Object Detection API:与 TensorFlow 对象检测 API 结合使用,评估 TensorFlow 模型的性能。
  • PyTorch:与 PyTorch 框架结合使用,评估 PyTorch 模型的性能。
  • COCO API:与
热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5