Mean Average Precision (mAP) 开源项目教程
2024-09-01 01:16:41作者:瞿蔚英Wynne
1、项目介绍
Mean Average Precision (mAP) 是一个用于评估对象检测模型性能的开源项目。mAP 是对象检测和分割系统分析中常用的指标,广泛应用于 Faster R-CNN、MobileNet、SSD 和 YOLO 等算法。该项目提供了计算 mAP 的工具和方法,帮助开发者准确评估其模型的性能。
2、项目快速启动
安装
首先,克隆项目仓库到本地:
git clone https://github.com/bes-dev/mean_average_precision.git
cd mean_average_precision
然后,安装所需的依赖包:
pip install -r requirements.txt
使用示例
以下是一个简单的使用示例,展示如何计算 mAP:
import numpy as np
from mean_average_precision import MetricBuilder
# 定义真实标签和预测结果
gt = np.array([
[439, 157, 556, 241, 0, 0, 0],
[437, 246, 518, 351, 0, 0, 0],
[515, 306, 595, 375, 0, 0, 0],
[407, 386, 531, 476, 0, 0, 0],
[544, 419, 621, 476, 0, 0, 0],
[609, 297, 636, 392, 0, 0, 0]
])
preds = np.array([
[429, 219, 528, 247, 0, 0.460851],
[433, 260, 506, 336, 0, 0.269833],
[518, 314, 603, 369, 0, 0.462608],
[592, 310, 634, 388, 0, 0.298196],
[403, 384, 517, 461, 0, 0.382881],
[405, 429, 519, 470, 0, 0.369369],
[433, 272, 499, 341, 0, 0.272826],
[413, 390, 515, 459, 0, 0.619459]
])
# 创建评估指标函数
metric_fn = MetricBuilder.build_evaluation_metric("map_2d", async_mode=True)
# 添加真实标签和预测结果
metric_fn.add(preds, gt)
# 计算 mAP
mAP = metric_fn.value(iou_thresholds=0.5)
print(f"mAP: {mAP}")
3、应用案例和最佳实践
应用案例
- 自动驾驶:在自动驾驶系统中,mAP 用于评估车辆检测和行人检测模型的性能。
- 医学图像分析:在医学图像分析中,mAP 用于评估肿瘤检测和病变识别模型的性能。
最佳实践
- 数据集准备:确保数据集的质量和多样性,以提高模型的泛化能力。
- 模型调优:通过调整模型参数和结构,优化模型的性能。
- 交叉验证:使用交叉验证方法,确保模型的稳定性和可靠性。
4、典型生态项目
- TensorFlow Object Detection API:与 TensorFlow 对象检测 API 结合使用,评估 TensorFlow 模型的性能。
- PyTorch:与 PyTorch 框架结合使用,评估 PyTorch 模型的性能。
- COCO API:与
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248