多模态语音情感识别指南
2024-09-24 07:06:40作者:董灵辛Dennis
项目介绍
多模态语音情感识别 是一个轻量级且可解释的机器学习模型,旨在通过结合音频特征进行语音情感的识别,并解决情感表达中的不确定性问题。该模型基于IEMOCAP数据集训练,展示出与深度学习模型相匹敌甚至在某些情况下更优的性能。研究团队利用手工设计的音频信号特性,对比了基于机器学习(如逻辑回归、支持向量机、随机森林等)和基于深度学习的方法(包括多层感知器和LSTM分类器),并验证了这些轻量化模型的有效性。
项目快速启动
环境准备
首先,确保你的开发环境中安装了必要的库。推荐在新的Python虚拟环境中操作以避免版本冲突:
pip install -r requirements.txt
仓库克隆与运行步骤
-
克隆项目:
git clone https://github.com/Demfier/multimodal-speech-emotion-recognition.git
-
进入项目目录:
cd multimodal-speech-emotion-recognition
-
启动Jupyter Notebook:
jupyter notebook
-
执行笔记本文件:
- 运行
1_extract_emotion_labels.ipynb
提取标签。 - 继续至
2_build_audio_vectors.ipynb
,3_extract_audio_features.ipynb
, 直至数据预处理完成。 - 如需比较或基准测试,首先训练LSTM分类器,修改
config.py
中的实验设置。 - 使用
python lstm_classifier.py
开始训练(选择对应的exp_mode
)。
- 运行
注意事项
运行各阶段时,请确保存储路径正确无误,当前一些路径可能还未完全标准化。
应用案例与最佳实践
开发者可以利用此模型集成到聊天机器人、客户服务自动应答系统中,提升交互的真实性和人性化程度。最佳实践中,应首先对特定领域或目标人群的情感词汇表进行定制化调整,随后采用本项目提供的模型框架,进行微调训练,以适应特定场景的情感识别需求。
典型生态项目
在开源社区,类似的项目如David-Yoon的多模态语音情感识别,也采用了TensorFlow实现,专注于结合音频和文本信息的深度学习模型,这为研究和应用提供了另一种视角和技术栈。这些项目共同构建了一个围绕语音情感分析的强大生态,促进了技术在人机交互、情感智能领域的应用。
本文档提供了一条快速上手多模态语音情感识别项目的基础路径,并简要介绍了其在实际应用中的潜力及同类生态项目的关联性,帮助开发者快速融入这一前沿技术领域。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
213
2.21 K

暂无简介
Dart
521
115

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
578

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399