首页
/ 多模态语音情感识别指南

多模态语音情感识别指南

2024-09-24 19:29:03作者:董灵辛Dennis

项目介绍

多模态语音情感识别 是一个轻量级且可解释的机器学习模型,旨在通过结合音频特征进行语音情感的识别,并解决情感表达中的不确定性问题。该模型基于IEMOCAP数据集训练,展示出与深度学习模型相匹敌甚至在某些情况下更优的性能。研究团队利用手工设计的音频信号特性,对比了基于机器学习(如逻辑回归、支持向量机、随机森林等)和基于深度学习的方法(包括多层感知器和LSTM分类器),并验证了这些轻量化模型的有效性。

项目快速启动

环境准备

首先,确保你的开发环境中安装了必要的库。推荐在新的Python虚拟环境中操作以避免版本冲突:

pip install -r requirements.txt

仓库克隆与运行步骤

  1. 克隆项目:

    git clone https://github.com/Demfier/multimodal-speech-emotion-recognition.git
    
  2. 进入项目目录:

    cd multimodal-speech-emotion-recognition
    
  3. 启动Jupyter Notebook:

    jupyter notebook
    
  4. 执行笔记本文件

    • 运行 1_extract_emotion_labels.ipynb 提取标签。
    • 继续至 2_build_audio_vectors.ipynb, 3_extract_audio_features.ipynb, 直至数据预处理完成。
    • 如需比较或基准测试,首先训练LSTM分类器,修改 config.py 中的实验设置。
    • 使用 python lstm_classifier.py 开始训练(选择对应的exp_mode)。

注意事项

运行各阶段时,请确保存储路径正确无误,当前一些路径可能还未完全标准化。

应用案例与最佳实践

开发者可以利用此模型集成到聊天机器人、客户服务自动应答系统中,提升交互的真实性和人性化程度。最佳实践中,应首先对特定领域或目标人群的情感词汇表进行定制化调整,随后采用本项目提供的模型框架,进行微调训练,以适应特定场景的情感识别需求。

典型生态项目

在开源社区,类似的项目如David-Yoon的多模态语音情感识别,也采用了TensorFlow实现,专注于结合音频和文本信息的深度学习模型,这为研究和应用提供了另一种视角和技术栈。这些项目共同构建了一个围绕语音情感分析的强大生态,促进了技术在人机交互、情感智能领域的应用。


本文档提供了一条快速上手多模态语音情感识别项目的基础路径,并简要介绍了其在实际应用中的潜力及同类生态项目的关联性,帮助开发者快速融入这一前沿技术领域。

热门项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
611
115
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79
mdmd
✍ WeChat Markdown Editor | 一款高度简洁的微信 Markdown 编辑器:支持 Markdown 语法、色盘取色、多图上传、一键下载文档、自定义 CSS 样式、一键重置等特性
Vue
112
25
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29
go-stockgo-stock
🦄🦄🦄AI赋能股票分析:自选股行情获取,成本盈亏展示,涨跌报警推送,市场整体/个股情绪分析,K线技术指标分析等。数据全部保留在本地。支持DeepSeek,OpenAI, Ollama,LMStudio,AnythingLLM,硅基流动,火山方舟,阿里云百炼等平台或模型。
Go
1
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
383
36
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
182
44
frogfrog
这是一个人工生命试验项目,最终目标是创建“有自我意识表现”的模拟生命体。
Java
8
0