首页
/ 多模态语音情感识别指南

多模态语音情感识别指南

2024-09-24 15:03:51作者:董灵辛Dennis

项目介绍

多模态语音情感识别 是一个轻量级且可解释的机器学习模型,旨在通过结合音频特征进行语音情感的识别,并解决情感表达中的不确定性问题。该模型基于IEMOCAP数据集训练,展示出与深度学习模型相匹敌甚至在某些情况下更优的性能。研究团队利用手工设计的音频信号特性,对比了基于机器学习(如逻辑回归、支持向量机、随机森林等)和基于深度学习的方法(包括多层感知器和LSTM分类器),并验证了这些轻量化模型的有效性。

项目快速启动

环境准备

首先,确保你的开发环境中安装了必要的库。推荐在新的Python虚拟环境中操作以避免版本冲突:

pip install -r requirements.txt

仓库克隆与运行步骤

  1. 克隆项目:

    git clone https://github.com/Demfier/multimodal-speech-emotion-recognition.git
    
  2. 进入项目目录:

    cd multimodal-speech-emotion-recognition
    
  3. 启动Jupyter Notebook:

    jupyter notebook
    
  4. 执行笔记本文件

    • 运行 1_extract_emotion_labels.ipynb 提取标签。
    • 继续至 2_build_audio_vectors.ipynb, 3_extract_audio_features.ipynb, 直至数据预处理完成。
    • 如需比较或基准测试,首先训练LSTM分类器,修改 config.py 中的实验设置。
    • 使用 python lstm_classifier.py 开始训练(选择对应的exp_mode)。

注意事项

运行各阶段时,请确保存储路径正确无误,当前一些路径可能还未完全标准化。

应用案例与最佳实践

开发者可以利用此模型集成到聊天机器人、客户服务自动应答系统中,提升交互的真实性和人性化程度。最佳实践中,应首先对特定领域或目标人群的情感词汇表进行定制化调整,随后采用本项目提供的模型框架,进行微调训练,以适应特定场景的情感识别需求。

典型生态项目

在开源社区,类似的项目如David-Yoon的多模态语音情感识别,也采用了TensorFlow实现,专注于结合音频和文本信息的深度学习模型,这为研究和应用提供了另一种视角和技术栈。这些项目共同构建了一个围绕语音情感分析的强大生态,促进了技术在人机交互、情感智能领域的应用。


本文档提供了一条快速上手多模态语音情感识别项目的基础路径,并简要介绍了其在实际应用中的潜力及同类生态项目的关联性,帮助开发者快速融入这一前沿技术领域。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511