Locust性能测试中动态URL请求的统计分组策略
2025-05-07 07:54:53作者:田桥桑Industrious
在Locust性能测试工具的实际应用中,测试人员经常会遇到动态URL参数的场景。这类请求虽然逻辑上属于同一类API调用,但由于URL参数不同,默认情况下会被Locust统计为独立的请求条目,这会给测试结果分析带来困扰。
问题背景
当使用Locust进行SAML协议的登录流程测试时,prepare_for_authenticate()方法会生成包含不同SAMLRequest参数的动态URL。在默认配置下,Locust会将每个带有不同参数的URL视为独立请求进行统计,导致测试报告中出现大量看似独立但实际上属于同一逻辑操作的请求条目。
解决方案
Locust提供了name参数来解决这个问题。通过在请求方法中指定name参数,可以将逻辑上相同但URL不同的请求归为一类进行统计。这个功能特别适用于以下场景:
- 带有查询参数的RESTful API
- 包含动态路径参数的URL
- 使用随机生成token的认证请求
实现方法
在测试脚本中,可以通过以下方式使用name参数:
@task
def saml_checkin(self):
# 获取动态URL
sid, http_args = self.saml2client.prepare_for_authenticate(..)
self.headers = dict(http_args['headers'])
self.redirect_url = http_args["headers"][0][1]
# 使用name参数统一统计
resp = self.client.get(
self.redirect_url,
headers=self.headers,
verify=True,
name="/saml-idp/login" # 统一命名
)
最佳实践
- 命名规范:建议使用API的基础路径作为name值,避免包含参数部分
- 统计粒度:根据业务需求决定分组粒度,可以将多个相关API合并统计
- 异常处理:考虑为不同类型的错误响应设置不同的name值,便于问题定位
- 文档记录:在测试脚本中注释说明name参数的使用逻辑,便于团队协作
效果对比
使用name参数前后,测试报告的差异主要体现在:
- 请求统计:从分散的多个条目变为聚合的单一条目
- 性能指标:可以准确计算同一类请求的总体性能数据
- 问题定位:更容易发现特定API的性能瓶颈
- 报告可读性:大幅提升测试报告的可读性和分析效率
通过合理使用name参数,测试人员可以获得更加清晰、准确的性能测试结果,为系统优化提供更有价值的参考数据。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492