如何在CVAT项目中统计标注对象数量
2025-05-16 13:03:25作者:宣利权Counsellor
概述
在计算机视觉项目中,了解数据集的标注统计信息对于项目管理、质量控制和资源分配都至关重要。本文将介绍如何在CVAT这个开源的计算机视觉标注工具中,通过编程方式获取项目中各类标注对象的详细统计信息。
统计需求分析
在实际项目中,我们通常需要了解以下关键指标:
- 项目中各子集(如train/test)的图片数量
- 各类标注对象(如矩形框、多边形等)的总数量
- 标注对象在不同任务中的分布情况
这些统计信息能帮助我们评估项目进度、检查标注质量,并为后续模型训练提供数据参考。
技术实现方案
CVAT提供了Python SDK,我们可以利用它来获取项目的详细标注信息。以下是一个完整的实现方案:
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
from cvat_sdk.core.proxies.tasks import Task
from cvat_sdk.core.helpers import get_paginated_collection
from tqdm import tqdm
def main(args: Optional[List[str]] = None) -> int:
parser = ArgumentParser()
parser.add_argument("project_id")
parsed_args = parser.parse_args(args)
with make_client(...) as client:
all_annotations_count = {}
tasks = [
Task(client=client, model=task_model)
for task_model in get_paginated_collection(
client.tasks.api.list_endpoint,
project_id=parsed_args.project_id
)
]
for task in tqdm(tasks):
annotations = task.get_annotations()
annotations_count = {}
annotations_count["tag"] = annotations_count.get("tag", 0) + len(annotations.tags)
annotations_count["shapes"] = annotations_count.get("shapes", 0) + len(
annotations.shapes
)
annotations_count["tracks"] = annotations_count.get("tracks", 0) + len(
annotations.tracks
)
for shape in annotations.shapes:
annotations_count[shape.type.value] = annotations_count.get(shape.type.value, 0) + 1
print(f"Task {task.id} annotation counts:", annotations_count)
for k, v in annotations_count.items():
all_annotations_count[k] = all_annotations_count.get(k, 0) + v
print("tasks visited:", [t.id for t in tasks])
print("annotations count:", all_annotations_count)
return 0
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
代码解析
- 初始化客户端:使用
make_client创建与CVAT服务器的连接 - 获取项目任务列表:通过
get_paginated_collection获取项目中的所有任务 - 遍历任务获取标注:对每个任务调用
get_annotations()方法获取标注数据 - 统计标注类型:
- 统计标签(tag)数量
- 统计形状(shapes)数量
- 统计轨迹(tracks)数量
- 按形状类型(矩形、多边形等)进一步细分统计
- 汇总结果:将所有任务的统计结果汇总输出
注意事项
-
轨迹对象统计:代码中统计的是轨迹(track)的数量,而不是轨迹中的具体帧数。如果需要统计轨迹在所有帧中的实例总数,需要额外处理。
-
性能考虑:对于大型项目,建议分批处理任务,避免内存问题。
-
认证配置:实际使用时需要配置正确的CVAT服务器地址和认证信息。
扩展应用
基于这个基础统计功能,我们可以进一步开发:
- 标注质量分析工具
- 数据集平衡性检查
- 自动生成项目报告
- 标注进度监控面板
总结
通过CVAT SDK获取项目标注统计信息是一个高效可靠的方法。本文提供的代码示例可以直接用于项目统计,也可以作为基础进行二次开发,满足各种定制化的统计需求。掌握这项技术将大大提升计算机视觉项目管理效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
480
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882