如何在CVAT项目中统计标注对象数量
2025-05-16 13:32:15作者:宣利权Counsellor
概述
在计算机视觉项目中,了解数据集的标注统计信息对于项目管理、质量控制和资源分配都至关重要。本文将介绍如何在CVAT这个开源的计算机视觉标注工具中,通过编程方式获取项目中各类标注对象的详细统计信息。
统计需求分析
在实际项目中,我们通常需要了解以下关键指标:
- 项目中各子集(如train/test)的图片数量
- 各类标注对象(如矩形框、多边形等)的总数量
- 标注对象在不同任务中的分布情况
这些统计信息能帮助我们评估项目进度、检查标注质量,并为后续模型训练提供数据参考。
技术实现方案
CVAT提供了Python SDK,我们可以利用它来获取项目的详细标注信息。以下是一个完整的实现方案:
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
from cvat_sdk.core.proxies.tasks import Task
from cvat_sdk.core.helpers import get_paginated_collection
from tqdm import tqdm
def main(args: Optional[List[str]] = None) -> int:
parser = ArgumentParser()
parser.add_argument("project_id")
parsed_args = parser.parse_args(args)
with make_client(...) as client:
all_annotations_count = {}
tasks = [
Task(client=client, model=task_model)
for task_model in get_paginated_collection(
client.tasks.api.list_endpoint,
project_id=parsed_args.project_id
)
]
for task in tqdm(tasks):
annotations = task.get_annotations()
annotations_count = {}
annotations_count["tag"] = annotations_count.get("tag", 0) + len(annotations.tags)
annotations_count["shapes"] = annotations_count.get("shapes", 0) + len(
annotations.shapes
)
annotations_count["tracks"] = annotations_count.get("tracks", 0) + len(
annotations.tracks
)
for shape in annotations.shapes:
annotations_count[shape.type.value] = annotations_count.get(shape.type.value, 0) + 1
print(f"Task {task.id} annotation counts:", annotations_count)
for k, v in annotations_count.items():
all_annotations_count[k] = all_annotations_count.get(k, 0) + v
print("tasks visited:", [t.id for t in tasks])
print("annotations count:", all_annotations_count)
return 0
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
代码解析
- 初始化客户端:使用
make_client创建与CVAT服务器的连接 - 获取项目任务列表:通过
get_paginated_collection获取项目中的所有任务 - 遍历任务获取标注:对每个任务调用
get_annotations()方法获取标注数据 - 统计标注类型:
- 统计标签(tag)数量
- 统计形状(shapes)数量
- 统计轨迹(tracks)数量
- 按形状类型(矩形、多边形等)进一步细分统计
- 汇总结果:将所有任务的统计结果汇总输出
注意事项
-
轨迹对象统计:代码中统计的是轨迹(track)的数量,而不是轨迹中的具体帧数。如果需要统计轨迹在所有帧中的实例总数,需要额外处理。
-
性能考虑:对于大型项目,建议分批处理任务,避免内存问题。
-
认证配置:实际使用时需要配置正确的CVAT服务器地址和认证信息。
扩展应用
基于这个基础统计功能,我们可以进一步开发:
- 标注质量分析工具
- 数据集平衡性检查
- 自动生成项目报告
- 标注进度监控面板
总结
通过CVAT SDK获取项目标注统计信息是一个高效可靠的方法。本文提供的代码示例可以直接用于项目统计,也可以作为基础进行二次开发,满足各种定制化的统计需求。掌握这项技术将大大提升计算机视觉项目管理效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210