如何在CVAT项目中统计标注对象数量
2025-05-16 12:44:14作者:宣利权Counsellor
概述
在计算机视觉项目中,了解数据集的标注统计信息对于项目管理、质量控制和资源分配都至关重要。本文将介绍如何在CVAT这个开源的计算机视觉标注工具中,通过编程方式获取项目中各类标注对象的详细统计信息。
统计需求分析
在实际项目中,我们通常需要了解以下关键指标:
- 项目中各子集(如train/test)的图片数量
- 各类标注对象(如矩形框、多边形等)的总数量
- 标注对象在不同任务中的分布情况
这些统计信息能帮助我们评估项目进度、检查标注质量,并为后续模型训练提供数据参考。
技术实现方案
CVAT提供了Python SDK,我们可以利用它来获取项目的详细标注信息。以下是一个完整的实现方案:
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
from cvat_sdk.core.proxies.tasks import Task
from cvat_sdk.core.helpers import get_paginated_collection
from tqdm import tqdm
def main(args: Optional[List[str]] = None) -> int:
parser = ArgumentParser()
parser.add_argument("project_id")
parsed_args = parser.parse_args(args)
with make_client(...) as client:
all_annotations_count = {}
tasks = [
Task(client=client, model=task_model)
for task_model in get_paginated_collection(
client.tasks.api.list_endpoint,
project_id=parsed_args.project_id
)
]
for task in tqdm(tasks):
annotations = task.get_annotations()
annotations_count = {}
annotations_count["tag"] = annotations_count.get("tag", 0) + len(annotations.tags)
annotations_count["shapes"] = annotations_count.get("shapes", 0) + len(
annotations.shapes
)
annotations_count["tracks"] = annotations_count.get("tracks", 0) + len(
annotations.tracks
)
for shape in annotations.shapes:
annotations_count[shape.type.value] = annotations_count.get(shape.type.value, 0) + 1
print(f"Task {task.id} annotation counts:", annotations_count)
for k, v in annotations_count.items():
all_annotations_count[k] = all_annotations_count.get(k, 0) + v
print("tasks visited:", [t.id for t in tasks])
print("annotations count:", all_annotations_count)
return 0
if __name__ == "__main__":
sys.exit(main(sys.argv[1:]))
代码解析
- 初始化客户端:使用
make_client创建与CVAT服务器的连接 - 获取项目任务列表:通过
get_paginated_collection获取项目中的所有任务 - 遍历任务获取标注:对每个任务调用
get_annotations()方法获取标注数据 - 统计标注类型:
- 统计标签(tag)数量
- 统计形状(shapes)数量
- 统计轨迹(tracks)数量
- 按形状类型(矩形、多边形等)进一步细分统计
- 汇总结果:将所有任务的统计结果汇总输出
注意事项
-
轨迹对象统计:代码中统计的是轨迹(track)的数量,而不是轨迹中的具体帧数。如果需要统计轨迹在所有帧中的实例总数,需要额外处理。
-
性能考虑:对于大型项目,建议分批处理任务,避免内存问题。
-
认证配置:实际使用时需要配置正确的CVAT服务器地址和认证信息。
扩展应用
基于这个基础统计功能,我们可以进一步开发:
- 标注质量分析工具
- 数据集平衡性检查
- 自动生成项目报告
- 标注进度监控面板
总结
通过CVAT SDK获取项目标注统计信息是一个高效可靠的方法。本文提供的代码示例可以直接用于项目统计,也可以作为基础进行二次开发,满足各种定制化的统计需求。掌握这项技术将大大提升计算机视觉项目管理效率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
410
3.16 K
Ascend Extension for PyTorch
Python
227
254
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
264
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868