如何在CVAT项目中统计标注对象数量
2025-05-16 22:10:46作者:裴锟轩Denise
CVAT作为一款开源的计算机视觉标注工具,广泛应用于各类图像和视频标注任务。在实际项目中,我们经常需要统计整个项目中的标注对象数量,以便进行项目管理、资源分配和质量控制。本文将详细介绍如何在CVAT项目中获取各类标注对象的统计信息。
统计需求分析
在CVAT项目中,标注数据的组织结构通常为:项目(Project)包含多个任务(Task),每个任务包含多个作业(Job),每个作业又包含多帧图像(Frame),每帧图像上可能有多个标注对象(Object)。用户需要统计的是整个项目中所有标注对象的汇总数量。
技术实现方案
CVAT的标注数据是按作业(Job)存储在数据库中的。要获取整个项目的标注统计,需要遍历项目中的所有任务,然后获取每个任务的标注信息进行汇总。以下是实现这一功能的核心思路:
- 首先获取指定项目ID下的所有任务
- 遍历每个任务,获取其标注数据
- 对标注数据进行分类统计
- 汇总所有任务的统计结果
代码实现详解
使用CVAT的Python SDK可以方便地实现上述功能。以下是核心代码解析:
from cvat_sdk import make_client
from cvat_sdk.core.proxies.tasks import Task
from cvat_sdk.core.helpers import get_paginated_collection
# 初始化客户端连接
with make_client(...) as client:
all_annotations_count = {}
# 获取项目下的所有任务
tasks = [
Task(client=client, model=task_model)
for task_model in get_paginated_collection(
client.tasks.api.list_endpoint,
project_id=project_id
)
]
# 遍历每个任务进行统计
for task in tasks:
annotations = task.get_annotations()
# 初始化统计字典
annotations_count = {}
annotations_count["tag"] = len(annotations.tags)
annotations_count["shapes"] = len(annotations.shapes)
annotations_count["tracks"] = len(annotations.tracks)
# 按形状类型细分统计
for shape in annotations.shapes:
annotations_count[shape.type.value] = annotations_count.get(shape.type.value, 0) + 1
# 汇总到全局统计
for k, v in annotations_count.items():
all_annotations_count[k] = all_annotations_count.get(k, 0) + v
统计结果说明
执行上述代码后,将得到一个包含各类标注数量的字典,例如:
{
"tag": 5,
"shapes": 120,
"tracks": 3,
"rectangle": 80,
"polygon": 40
}
其中:
tag表示标签类型的标注数量shapes表示所有形状标注的总数tracks表示跟踪对象的数量- 其他键值表示特定形状类型的数量(如rectangle、polygon等)
注意事项
-
对于跟踪对象(tracks),一个track可能包含多个帧中的标注,这里的统计仅计算track对象本身的数量,而不是所有帧中的实例数量。
-
对于大型项目,统计可能需要较长时间,建议添加进度显示功能。
-
统计结果可以进一步细化为按子集(train/val/test)分类,这需要额外处理任务的子集信息。
通过这种方法,用户可以全面了解CVAT项目中的标注情况,为项目管理提供数据支持。这种统计方式不直接查询数据库,而是通过API获取,保证了数据的一致性和安全性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135