如何在CVAT项目中统计标注对象数量
2025-05-16 15:35:49作者:裴锟轩Denise
CVAT作为一款开源的计算机视觉标注工具,广泛应用于各类图像和视频标注任务。在实际项目中,我们经常需要统计整个项目中的标注对象数量,以便进行项目管理、资源分配和质量控制。本文将详细介绍如何在CVAT项目中获取各类标注对象的统计信息。
统计需求分析
在CVAT项目中,标注数据的组织结构通常为:项目(Project)包含多个任务(Task),每个任务包含多个作业(Job),每个作业又包含多帧图像(Frame),每帧图像上可能有多个标注对象(Object)。用户需要统计的是整个项目中所有标注对象的汇总数量。
技术实现方案
CVAT的标注数据是按作业(Job)存储在数据库中的。要获取整个项目的标注统计,需要遍历项目中的所有任务,然后获取每个任务的标注信息进行汇总。以下是实现这一功能的核心思路:
- 首先获取指定项目ID下的所有任务
- 遍历每个任务,获取其标注数据
- 对标注数据进行分类统计
- 汇总所有任务的统计结果
代码实现详解
使用CVAT的Python SDK可以方便地实现上述功能。以下是核心代码解析:
from cvat_sdk import make_client
from cvat_sdk.core.proxies.tasks import Task
from cvat_sdk.core.helpers import get_paginated_collection
# 初始化客户端连接
with make_client(...) as client:
all_annotations_count = {}
# 获取项目下的所有任务
tasks = [
Task(client=client, model=task_model)
for task_model in get_paginated_collection(
client.tasks.api.list_endpoint,
project_id=project_id
)
]
# 遍历每个任务进行统计
for task in tasks:
annotations = task.get_annotations()
# 初始化统计字典
annotations_count = {}
annotations_count["tag"] = len(annotations.tags)
annotations_count["shapes"] = len(annotations.shapes)
annotations_count["tracks"] = len(annotations.tracks)
# 按形状类型细分统计
for shape in annotations.shapes:
annotations_count[shape.type.value] = annotations_count.get(shape.type.value, 0) + 1
# 汇总到全局统计
for k, v in annotations_count.items():
all_annotations_count[k] = all_annotations_count.get(k, 0) + v
统计结果说明
执行上述代码后,将得到一个包含各类标注数量的字典,例如:
{
"tag": 5,
"shapes": 120,
"tracks": 3,
"rectangle": 80,
"polygon": 40
}
其中:
tag表示标签类型的标注数量shapes表示所有形状标注的总数tracks表示跟踪对象的数量- 其他键值表示特定形状类型的数量(如rectangle、polygon等)
注意事项
-
对于跟踪对象(tracks),一个track可能包含多个帧中的标注,这里的统计仅计算track对象本身的数量,而不是所有帧中的实例数量。
-
对于大型项目,统计可能需要较长时间,建议添加进度显示功能。
-
统计结果可以进一步细化为按子集(train/val/test)分类,这需要额外处理任务的子集信息。
通过这种方法,用户可以全面了解CVAT项目中的标注情况,为项目管理提供数据支持。这种统计方式不直接查询数据库,而是通过API获取,保证了数据的一致性和安全性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110