如何在CVAT项目中统计标注对象数量
2025-05-16 04:22:28作者:卓艾滢Kingsley
CVAT(Computer Vision Annotation Tool)作为一款开源的计算机视觉标注工具,广泛应用于各种图像和视频标注场景。在实际项目中,我们经常需要统计整个项目中标注对象的总数量,这对于项目管理、进度跟踪和资源分配都至关重要。
统计需求分析
在CVAT项目中,标注对象的统计通常需要考虑以下维度:
- 按任务(task)统计
- 按子集(subset)统计(如train/test)
- 按标注类型统计(如矩形框、多边形等)
典型的统计需求可能包括:
- 训练集图像数量
- 训练集标注对象总数
- 测试集图像数量
- 测试集标注对象总数
技术实现方案
CVAT的标注数据是按任务(job)存储在数据库中的。要获取整个项目的统计信息,需要遍历项目中的所有任务,然后汇总各任务的标注数据。
使用CVAT SDK实现
CVAT提供了Python SDK,可以方便地实现项目级别的统计功能。以下是核心实现思路:
- 连接CVAT服务器:使用
make_client建立与CVAT服务器的连接 - 获取项目任务列表:通过
get_paginated_collection获取项目下的所有任务 - 遍历任务获取标注:对每个任务调用
get_annotations()方法获取标注数据 - 统计标注对象:分析标注数据中的tags、shapes和tracks
代码实现要点
# 初始化统计字典
annotations_count = {
"tag": 0, # 标签数量
"shapes": 0, # 形状总数
"tracks": 0, # 跟踪对象总数
"rectangle": 0, # 矩形框数量
"polygon": 0, # 多边形数量
# 其他形状类型...
}
# 遍历每个任务
for task in tasks:
annotations = task.get_annotations()
# 统计各类标注
annotations_count["tag"] += len(annotations.tags)
annotations_count["shapes"] += len(annotations.shapes)
annotations_count["tracks"] += len(annotations.tracks)
# 按形状类型细分统计
for shape in annotations.shapes:
annotations_count[shape.type.value] += 1
关于跟踪对象(tracks)的统计
需要注意的是,跟踪对象(tracks)的统计有其特殊性。一个track对象可能跨越多个帧,因此简单的计数可能无法反映实际的边界框数量。如果需要精确统计,应该遍历track的所有帧,计算实际出现的边界框数量。
实际应用建议
- 定期统计:建议在项目关键节点进行统计,如里程碑阶段
- 分维度统计:除了总数,还应该按标注类型、子集等维度进行统计
- 自动化:可以将统计脚本集成到CI/CD流程中,实现自动化统计
- 可视化:将统计结果以图表形式展示,便于直观理解
通过这种方式,项目管理者可以全面掌握标注进度和质量,为后续的模型训练和评估提供数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
286
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
722
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19