如何在CVAT项目中统计标注对象数量
2025-05-16 04:22:28作者:卓艾滢Kingsley
CVAT(Computer Vision Annotation Tool)作为一款开源的计算机视觉标注工具,广泛应用于各种图像和视频标注场景。在实际项目中,我们经常需要统计整个项目中标注对象的总数量,这对于项目管理、进度跟踪和资源分配都至关重要。
统计需求分析
在CVAT项目中,标注对象的统计通常需要考虑以下维度:
- 按任务(task)统计
- 按子集(subset)统计(如train/test)
- 按标注类型统计(如矩形框、多边形等)
典型的统计需求可能包括:
- 训练集图像数量
- 训练集标注对象总数
- 测试集图像数量
- 测试集标注对象总数
技术实现方案
CVAT的标注数据是按任务(job)存储在数据库中的。要获取整个项目的统计信息,需要遍历项目中的所有任务,然后汇总各任务的标注数据。
使用CVAT SDK实现
CVAT提供了Python SDK,可以方便地实现项目级别的统计功能。以下是核心实现思路:
- 连接CVAT服务器:使用
make_client建立与CVAT服务器的连接 - 获取项目任务列表:通过
get_paginated_collection获取项目下的所有任务 - 遍历任务获取标注:对每个任务调用
get_annotations()方法获取标注数据 - 统计标注对象:分析标注数据中的tags、shapes和tracks
代码实现要点
# 初始化统计字典
annotations_count = {
"tag": 0, # 标签数量
"shapes": 0, # 形状总数
"tracks": 0, # 跟踪对象总数
"rectangle": 0, # 矩形框数量
"polygon": 0, # 多边形数量
# 其他形状类型...
}
# 遍历每个任务
for task in tasks:
annotations = task.get_annotations()
# 统计各类标注
annotations_count["tag"] += len(annotations.tags)
annotations_count["shapes"] += len(annotations.shapes)
annotations_count["tracks"] += len(annotations.tracks)
# 按形状类型细分统计
for shape in annotations.shapes:
annotations_count[shape.type.value] += 1
关于跟踪对象(tracks)的统计
需要注意的是,跟踪对象(tracks)的统计有其特殊性。一个track对象可能跨越多个帧,因此简单的计数可能无法反映实际的边界框数量。如果需要精确统计,应该遍历track的所有帧,计算实际出现的边界框数量。
实际应用建议
- 定期统计:建议在项目关键节点进行统计,如里程碑阶段
- 分维度统计:除了总数,还应该按标注类型、子集等维度进行统计
- 自动化:可以将统计脚本集成到CI/CD流程中,实现自动化统计
- 可视化:将统计结果以图表形式展示,便于直观理解
通过这种方式,项目管理者可以全面掌握标注进度和质量,为后续的模型训练和评估提供数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134