如何在CVAT项目中统计标注对象数量
2025-05-16 19:02:11作者:卓艾滢Kingsley
CVAT(Computer Vision Annotation Tool)作为一款开源的计算机视觉标注工具,广泛应用于各种图像和视频标注场景。在实际项目中,我们经常需要统计整个项目中标注对象的总数量,这对于项目管理、进度跟踪和资源分配都至关重要。
统计需求分析
在CVAT项目中,标注对象的统计通常需要考虑以下维度:
- 按任务(task)统计
- 按子集(subset)统计(如train/test)
- 按标注类型统计(如矩形框、多边形等)
典型的统计需求可能包括:
- 训练集图像数量
- 训练集标注对象总数
- 测试集图像数量
- 测试集标注对象总数
技术实现方案
CVAT的标注数据是按任务(job)存储在数据库中的。要获取整个项目的统计信息,需要遍历项目中的所有任务,然后汇总各任务的标注数据。
使用CVAT SDK实现
CVAT提供了Python SDK,可以方便地实现项目级别的统计功能。以下是核心实现思路:
- 连接CVAT服务器:使用
make_client
建立与CVAT服务器的连接 - 获取项目任务列表:通过
get_paginated_collection
获取项目下的所有任务 - 遍历任务获取标注:对每个任务调用
get_annotations()
方法获取标注数据 - 统计标注对象:分析标注数据中的tags、shapes和tracks
代码实现要点
# 初始化统计字典
annotations_count = {
"tag": 0, # 标签数量
"shapes": 0, # 形状总数
"tracks": 0, # 跟踪对象总数
"rectangle": 0, # 矩形框数量
"polygon": 0, # 多边形数量
# 其他形状类型...
}
# 遍历每个任务
for task in tasks:
annotations = task.get_annotations()
# 统计各类标注
annotations_count["tag"] += len(annotations.tags)
annotations_count["shapes"] += len(annotations.shapes)
annotations_count["tracks"] += len(annotations.tracks)
# 按形状类型细分统计
for shape in annotations.shapes:
annotations_count[shape.type.value] += 1
关于跟踪对象(tracks)的统计
需要注意的是,跟踪对象(tracks)的统计有其特殊性。一个track对象可能跨越多个帧,因此简单的计数可能无法反映实际的边界框数量。如果需要精确统计,应该遍历track的所有帧,计算实际出现的边界框数量。
实际应用建议
- 定期统计:建议在项目关键节点进行统计,如里程碑阶段
- 分维度统计:除了总数,还应该按标注类型、子集等维度进行统计
- 自动化:可以将统计脚本集成到CI/CD流程中,实现自动化统计
- 可视化:将统计结果以图表形式展示,便于直观理解
通过这种方式,项目管理者可以全面掌握标注进度和质量,为后续的模型训练和评估提供数据支持。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K