ESM3蛋白质语言模型中的嵌入与对数概率获取方法解析
2025-07-06 02:29:20作者:劳婵绚Shirley
概述
在蛋白质工程和生物信息学领域,ESM3作为一款先进的蛋白质语言模型,能够对蛋白质序列进行深度表示学习。本文将详细介绍如何使用ESM3模型获取蛋白质序列的嵌入表示(embeddings)和对数概率(logits),并分析两者在生物信息学研究中的应用差异。
嵌入与对数概率的基本概念
在蛋白质语言模型中,嵌入是指模型将每个氨基酸残基映射到一个高维连续向量空间中的表示,这种表示捕获了残基的语义和结构信息。而对数概率则是模型对下一个可能出现的氨基酸残基的预测分数,反映了模型对序列延续可能性的评估。
获取蛋白质序列嵌入
使用ESM3获取蛋白质序列嵌入是一个相对直接的过程:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESMProtein, SamplingConfig
from esm.utils.constants.models import ESM3_OPEN_SMALL
# 初始化模型
client = ESM3.from_pretrained(ESM3_OPEN_SMALL)
# 创建蛋白质对象
protein = ESMProtein(
sequence=("QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSYNAVWNWIRQSPSRGLEWLGRTYYRSGWYNDYAESVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARSGHITVFGVNVDAFDMWGQGTMVTVSS")
)
# 编码蛋白质序列
protein_tensor = client.encode(protein)
# 获取残基级嵌入
output = client.forward_and_sample(
protein_tensor,
SamplingConfig(return_per_residue_embeddings=True)
)
通过上述代码,我们可以获得形状为[130, 1536]的残基级嵌入矩阵,其中130代表序列长度,1536是每个残基的嵌入维度。
获取对数概率的挑战与方法
与获取嵌入相比,获取对数概率需要更深入的操作。ESM3的设计中,对数概率通常只在序列生成过程中内部使用,不直接暴露在高级API中。以下是两种获取对数概率的方法:
方法一:使用内部_forward方法
# 将蛋白质张量转换为批处理形式
from esm.sdk.api import _BatchedESMProteinTensor
batched_protein = _BatchedESMProteinTensor.from_protein_tensor(protein_tensor)
# 调用内部forward方法获取对数概率
logits = client._forward(batched_protein)
需要注意的是,这种方法直接调用了模型的内部接口,可能在未来的版本中发生变化。
方法二:通过采样配置获取
另一种更稳定的方式是利用模型的采样功能间接获取对数概率:
output = client.forward_and_sample(
protein_tensor,
SamplingConfig(return_logits=True)
)
应用场景分析
-
嵌入的应用:
- 蛋白质结构预测
- 功能注释
- 序列相似性分析
- 蛋白质工程中的表示学习
-
对数概率的应用:
- 序列设计优化
- 突变效应预测
- 蛋白质生成模型训练
- 适应性景观分析
最佳实践建议
- 对于大多数蛋白质表示学习任务,嵌入通常已经足够,且获取方式更简单稳定。
- 只有在需要进行序列生成或突变预测时,才需要考虑获取对数概率。
- 使用内部方法(_forward)时需注意版本兼容性问题,建议在关键应用中添加适当的版本检查和错误处理。
- 对于生产环境,建议封装获取对数概率的逻辑,以应对未来API变化。
总结
ESM3为蛋白质序列分析提供了强大的工具集,理解如何正确获取和使用嵌入与对数概率是充分利用这一模型的关键。通过本文介绍的方法,研究人员可以根据具体需求选择合适的表示形式,推动蛋白质工程和生物信息学研究的进展。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K