ESM3蛋白质语言模型中的嵌入与对数概率获取方法解析
2025-07-06 02:16:10作者:劳婵绚Shirley
概述
在蛋白质工程和生物信息学领域,ESM3作为一款先进的蛋白质语言模型,能够对蛋白质序列进行深度表示学习。本文将详细介绍如何使用ESM3模型获取蛋白质序列的嵌入表示(embeddings)和对数概率(logits),并分析两者在生物信息学研究中的应用差异。
嵌入与对数概率的基本概念
在蛋白质语言模型中,嵌入是指模型将每个氨基酸残基映射到一个高维连续向量空间中的表示,这种表示捕获了残基的语义和结构信息。而对数概率则是模型对下一个可能出现的氨基酸残基的预测分数,反映了模型对序列延续可能性的评估。
获取蛋白质序列嵌入
使用ESM3获取蛋白质序列嵌入是一个相对直接的过程:
from esm.models.esm3 import ESM3
from esm.sdk.api import ESMProtein, SamplingConfig
from esm.utils.constants.models import ESM3_OPEN_SMALL
# 初始化模型
client = ESM3.from_pretrained(ESM3_OPEN_SMALL)
# 创建蛋白质对象
protein = ESMProtein(
sequence=("QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSYNAVWNWIRQSPSRGLEWLGRTYYRSGWYNDYAESVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYCARSGHITVFGVNVDAFDMWGQGTMVTVSS")
)
# 编码蛋白质序列
protein_tensor = client.encode(protein)
# 获取残基级嵌入
output = client.forward_and_sample(
protein_tensor,
SamplingConfig(return_per_residue_embeddings=True)
)
通过上述代码,我们可以获得形状为[130, 1536]的残基级嵌入矩阵,其中130代表序列长度,1536是每个残基的嵌入维度。
获取对数概率的挑战与方法
与获取嵌入相比,获取对数概率需要更深入的操作。ESM3的设计中,对数概率通常只在序列生成过程中内部使用,不直接暴露在高级API中。以下是两种获取对数概率的方法:
方法一:使用内部_forward方法
# 将蛋白质张量转换为批处理形式
from esm.sdk.api import _BatchedESMProteinTensor
batched_protein = _BatchedESMProteinTensor.from_protein_tensor(protein_tensor)
# 调用内部forward方法获取对数概率
logits = client._forward(batched_protein)
需要注意的是,这种方法直接调用了模型的内部接口,可能在未来的版本中发生变化。
方法二:通过采样配置获取
另一种更稳定的方式是利用模型的采样功能间接获取对数概率:
output = client.forward_and_sample(
protein_tensor,
SamplingConfig(return_logits=True)
)
应用场景分析
-
嵌入的应用:
- 蛋白质结构预测
- 功能注释
- 序列相似性分析
- 蛋白质工程中的表示学习
-
对数概率的应用:
- 序列设计优化
- 突变效应预测
- 蛋白质生成模型训练
- 适应性景观分析
最佳实践建议
- 对于大多数蛋白质表示学习任务,嵌入通常已经足够,且获取方式更简单稳定。
- 只有在需要进行序列生成或突变预测时,才需要考虑获取对数概率。
- 使用内部方法(_forward)时需注意版本兼容性问题,建议在关键应用中添加适当的版本检查和错误处理。
- 对于生产环境,建议封装获取对数概率的逻辑,以应对未来API变化。
总结
ESM3为蛋白质序列分析提供了强大的工具集,理解如何正确获取和使用嵌入与对数概率是充分利用这一模型的关键。通过本文介绍的方法,研究人员可以根据具体需求选择合适的表示形式,推动蛋白质工程和生物信息学研究的进展。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133