DAB-DETR 使用与安装指南
2024-09-28 11:18:39作者:苗圣禹Peter
1. 目录结构及介绍
DAB-DETR 是 ICLR 2022 发表的论文 “DAB-DETR: 动态锚框作为更好的查询用于 DETR” 的官方实现。该项目基于 PyTorch 构建,旨在提供一种通过动态锚箱优化对象查询的新方法,以改善 DETR 式检测器的性能。下面是主要的目录结构及其简要介绍:
DAB-DETR/
├── datasets # 数据集处理相关脚本
├── figure # 可能包含的研究成果图表或数据可视化脚本
├── models # 模型定义,包括 DAB-DETR 和 DAB-Deformable-DETR 的架构
├── resources # 可能包括预训练模型或固定资源
├── util # 辅助工具和函数集合
├── .gitignore # Git 忽略文件
├── LICENSE # 开源许可协议(Apache-2.0)
├── README.md # 项目说明文档,包含关键信息和使用指导
├── coco.sh # 可能用于处理 COCO 数据集的脚本
├── engine.py # 主要的运行引擎,可能包含了训练和评估逻辑
├── inference_and_visualize.ipynb # 推理与可视化Jupyter Notebook
├── main.py # 项目入口文件,支持训练和评估
├── requirements.txt # Python 包依赖列表
└── run_with_submitit.py # 分布式任务提交脚本
2. 项目的启动文件介绍
主入口文件: main.py
这个文件是进行模型训练和评估的主要入口点。通过命令行参数,你可以指定不同的操作,如训练一个新的模型、评估现有模型的性能或者进行推理。例如,使用以下命令可以开始一个基本的训练过程,只需替换相应的路径即可。
python main.py -m dab_detr \
--output_dir logs/DABDETR/R50 \
--batch_size 1 \
--epochs 50 \
--lr_drop 40 \
--coco_path /path/to/your/COCODIR
Jupyter Notebook: inference_and_visualize.ipynb
该笔记本用于展示如何利用预训练模型进行推理,并对结果进行可视化。对于想要快速查看模型效果的用户非常有用。
3. 项目的配置文件介绍
虽然该项目没有明确指出单一的“配置文件”,但配置主要通过命令行参数和环境变量进行。main.py 中可以通过多个标志来调整实验设置,比如数据路径、模型类型、批次大小、训练轮数等。此外,项目内部分模块可能会有特定的配置选项,这些通常在代码内部通过硬编码或者简单的变量赋值形式存在。如果你需要更细粒度的配置控制,可能需要直接修改源代码中的相关参数或者遵循项目文档中提及的其他配置方式。
为了定制化配置,推荐的做法是查阅 main.py 中的参数定义以及通过 --help 参数来获取所有可用的命令行选项,如:
python main.py --help
这将列出所有的配置选项,帮助你根据自己的需求进行详细设置。记住,尽管没有传统意义上的 .yaml 或其他格式的外部配置文件,但通过脚本参数,你仍然能够灵活地配置训练和评估流程。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
323
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
159
179
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
642
254
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
247
87
暂无简介
Dart
610
137
React Native鸿蒙化仓库
JavaScript
239
311
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
474
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
366
3.07 K