DAB-DETR 使用与安装指南
2024-09-28 14:01:54作者:苗圣禹Peter
1. 目录结构及介绍
DAB-DETR 是 ICLR 2022 发表的论文 “DAB-DETR: 动态锚框作为更好的查询用于 DETR” 的官方实现。该项目基于 PyTorch 构建,旨在提供一种通过动态锚箱优化对象查询的新方法,以改善 DETR 式检测器的性能。下面是主要的目录结构及其简要介绍:
DAB-DETR/
├── datasets # 数据集处理相关脚本
├── figure # 可能包含的研究成果图表或数据可视化脚本
├── models # 模型定义,包括 DAB-DETR 和 DAB-Deformable-DETR 的架构
├── resources # 可能包括预训练模型或固定资源
├── util # 辅助工具和函数集合
├── .gitignore # Git 忽略文件
├── LICENSE # 开源许可协议(Apache-2.0)
├── README.md # 项目说明文档,包含关键信息和使用指导
├── coco.sh # 可能用于处理 COCO 数据集的脚本
├── engine.py # 主要的运行引擎,可能包含了训练和评估逻辑
├── inference_and_visualize.ipynb # 推理与可视化Jupyter Notebook
├── main.py # 项目入口文件,支持训练和评估
├── requirements.txt # Python 包依赖列表
└── run_with_submitit.py # 分布式任务提交脚本
2. 项目的启动文件介绍
主入口文件: main.py
这个文件是进行模型训练和评估的主要入口点。通过命令行参数,你可以指定不同的操作,如训练一个新的模型、评估现有模型的性能或者进行推理。例如,使用以下命令可以开始一个基本的训练过程,只需替换相应的路径即可。
python main.py -m dab_detr \
--output_dir logs/DABDETR/R50 \
--batch_size 1 \
--epochs 50 \
--lr_drop 40 \
--coco_path /path/to/your/COCODIR
Jupyter Notebook: inference_and_visualize.ipynb
该笔记本用于展示如何利用预训练模型进行推理,并对结果进行可视化。对于想要快速查看模型效果的用户非常有用。
3. 项目的配置文件介绍
虽然该项目没有明确指出单一的“配置文件”,但配置主要通过命令行参数和环境变量进行。main.py 中可以通过多个标志来调整实验设置,比如数据路径、模型类型、批次大小、训练轮数等。此外,项目内部分模块可能会有特定的配置选项,这些通常在代码内部通过硬编码或者简单的变量赋值形式存在。如果你需要更细粒度的配置控制,可能需要直接修改源代码中的相关参数或者遵循项目文档中提及的其他配置方式。
为了定制化配置,推荐的做法是查阅 main.py 中的参数定义以及通过 --help 参数来获取所有可用的命令行选项,如:
python main.py --help
这将列出所有的配置选项,帮助你根据自己的需求进行详细设置。记住,尽管没有传统意义上的 .yaml 或其他格式的外部配置文件,但通过脚本参数,你仍然能够灵活地配置训练和评估流程。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1