首页
/ 推荐文章:加速DETR训练的利器——SAM-DETR

推荐文章:加速DETR训练的利器——SAM-DETR

2024-05-22 08:17:32作者:郜逊炳

项目介绍

SAM-DETR(Semantic-Aligned-Matching DETR) 是一款基于PyTorch实现的高效对象检测框架,源于2022年CVPR会议的一篇研究论文。这款创新性的模型旨在解决DETR(DEtection TRansformer)模型在训练过程中收敛速度慢的问题,同时保持甚至提高其检测性能。

项目技术分析

SAM-DETR的核心是引入了“语义对齐匹配器”(Semantics Aligner),它将对象查询投影到与编码图像特征相同的嵌入空间中,使得匹配过程更加高效。此外,它通过寻找具有最区分性特征的关键点来强化匹配,从而加速收敛并提升检测准确性。这个模块巧妙地插入DETR解码器的每个层之前,不增加过多计算负担,却又能够与其他现有的收敛优化策略相兼容。

关键改进包括:

  • 语义对齐:通过对查询和特征进行语义对齐,简化了复杂匹配过程。
  • 显著点搜索:利用学习到的参考框中心位置生成位置嵌入,以找到最具鉴别性的特征点。

项目及技术应用场景

SAM-DETR适用于需要实时或高效物体检测的各种场景,如自动驾驶、智能监控、无人机航拍等,尤其是在资源有限的情况下,快速准确的物体检测对于系统响应至关重要。由于其能大幅减少训练时间,也适合于研究人员快速迭代和验证新想法。

项目特点

  • 更快的收敛速度:SAM-DETR可在12个周期内达到优于强基准Faster R-CNN(w/FPN)的表现。
  • 高精度:在更短的训练时间内,提供与DETR相当甚至更好的检测结果。
  • 易于集成:“插件式”设计,可以轻松添加到现有DETR架构,与现有优化策略互补。
  • 轻量级:尽管提升了性能,但并未显著增加计算开销。

最新进展

在最新更新中,SAM-DETR(w/ SMCA)在12个周期内达到37.0的AP,并在50个周期内达到42.7的AP,展示了其出色的性能潜力。

开始使用SAM-DETR

项目提供了详细的安装指南和脚本,包括使用Anaconda创建环境、安装依赖项以及数据准备。无论是单机还是Slurm集群,都有相应的训练和评估脚本可供直接使用。为了可视化检测结果,还提供了demo.py脚本。

通过Google Drive可获取预训练模型,便于进一步研究和应用。

总之,SAM-DETR是一款强大的工具,为DETR系列的优化开辟了新的道路,它的高效性和易用性使其成为任何需要物体检测任务的理想选择。立即尝试,体验更快、更准的对象检测!

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
178
262
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57
GitNextGitNext
基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3