首页
/ 推荐文章:加速DETR训练的利器——SAM-DETR

推荐文章:加速DETR训练的利器——SAM-DETR

2024-05-22 08:17:32作者:郜逊炳

项目介绍

SAM-DETR(Semantic-Aligned-Matching DETR) 是一款基于PyTorch实现的高效对象检测框架,源于2022年CVPR会议的一篇研究论文。这款创新性的模型旨在解决DETR(DEtection TRansformer)模型在训练过程中收敛速度慢的问题,同时保持甚至提高其检测性能。

项目技术分析

SAM-DETR的核心是引入了“语义对齐匹配器”(Semantics Aligner),它将对象查询投影到与编码图像特征相同的嵌入空间中,使得匹配过程更加高效。此外,它通过寻找具有最区分性特征的关键点来强化匹配,从而加速收敛并提升检测准确性。这个模块巧妙地插入DETR解码器的每个层之前,不增加过多计算负担,却又能够与其他现有的收敛优化策略相兼容。

关键改进包括:

  • 语义对齐:通过对查询和特征进行语义对齐,简化了复杂匹配过程。
  • 显著点搜索:利用学习到的参考框中心位置生成位置嵌入,以找到最具鉴别性的特征点。

项目及技术应用场景

SAM-DETR适用于需要实时或高效物体检测的各种场景,如自动驾驶、智能监控、无人机航拍等,尤其是在资源有限的情况下,快速准确的物体检测对于系统响应至关重要。由于其能大幅减少训练时间,也适合于研究人员快速迭代和验证新想法。

项目特点

  • 更快的收敛速度:SAM-DETR可在12个周期内达到优于强基准Faster R-CNN(w/FPN)的表现。
  • 高精度:在更短的训练时间内,提供与DETR相当甚至更好的检测结果。
  • 易于集成:“插件式”设计,可以轻松添加到现有DETR架构,与现有优化策略互补。
  • 轻量级:尽管提升了性能,但并未显著增加计算开销。

最新进展

在最新更新中,SAM-DETR(w/ SMCA)在12个周期内达到37.0的AP,并在50个周期内达到42.7的AP,展示了其出色的性能潜力。

开始使用SAM-DETR

项目提供了详细的安装指南和脚本,包括使用Anaconda创建环境、安装依赖项以及数据准备。无论是单机还是Slurm集群,都有相应的训练和评估脚本可供直接使用。为了可视化检测结果,还提供了demo.py脚本。

通过Google Drive可获取预训练模型,便于进一步研究和应用。

总之,SAM-DETR是一款强大的工具,为DETR系列的优化开辟了新的道路,它的高效性和易用性使其成为任何需要物体检测任务的理想选择。立即尝试,体验更快、更准的对象检测!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5