推荐文章:加速DETR训练的利器——SAM-DETR
2024-05-22 08:17:32作者:郜逊炳
项目介绍
SAM-DETR(Semantic-Aligned-Matching DETR) 是一款基于PyTorch实现的高效对象检测框架,源于2022年CVPR会议的一篇研究论文。这款创新性的模型旨在解决DETR(DEtection TRansformer)模型在训练过程中收敛速度慢的问题,同时保持甚至提高其检测性能。
项目技术分析
SAM-DETR的核心是引入了“语义对齐匹配器”(Semantics Aligner),它将对象查询投影到与编码图像特征相同的嵌入空间中,使得匹配过程更加高效。此外,它通过寻找具有最区分性特征的关键点来强化匹配,从而加速收敛并提升检测准确性。这个模块巧妙地插入DETR解码器的每个层之前,不增加过多计算负担,却又能够与其他现有的收敛优化策略相兼容。
关键改进包括:
- 语义对齐:通过对查询和特征进行语义对齐,简化了复杂匹配过程。
- 显著点搜索:利用学习到的参考框中心位置生成位置嵌入,以找到最具鉴别性的特征点。
项目及技术应用场景
SAM-DETR适用于需要实时或高效物体检测的各种场景,如自动驾驶、智能监控、无人机航拍等,尤其是在资源有限的情况下,快速准确的物体检测对于系统响应至关重要。由于其能大幅减少训练时间,也适合于研究人员快速迭代和验证新想法。
项目特点
- 更快的收敛速度:SAM-DETR可在12个周期内达到优于强基准Faster R-CNN(w/FPN)的表现。
- 高精度:在更短的训练时间内,提供与DETR相当甚至更好的检测结果。
- 易于集成:“插件式”设计,可以轻松添加到现有DETR架构,与现有优化策略互补。
- 轻量级:尽管提升了性能,但并未显著增加计算开销。
最新进展
在最新更新中,SAM-DETR(w/ SMCA)在12个周期内达到37.0的AP,并在50个周期内达到42.7的AP,展示了其出色的性能潜力。
开始使用SAM-DETR
项目提供了详细的安装指南和脚本,包括使用Anaconda创建环境、安装依赖项以及数据准备。无论是单机还是Slurm集群,都有相应的训练和评估脚本可供直接使用。为了可视化检测结果,还提供了demo.py脚本。
通过Google Drive可获取预训练模型,便于进一步研究和应用。
总之,SAM-DETR是一款强大的工具,为DETR系列的优化开辟了新的道路,它的高效性和易用性使其成为任何需要物体检测任务的理想选择。立即尝试,体验更快、更准的对象检测!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136