领航Transformer检测器:Anchor DETR
2024-05-21 13:46:26作者:傅爽业Veleda
项目简介
欢迎来到Anchor DETR的世界!这是一个官方实现的Anchor DETR项目,它将锚点编码为DETR中的对象查询。通过对每个锚点附加多种模式,Anchor DETR解决了"一个区域,多个物体"的难题,并引入了注意力变种RCDA,以降低高分辨率特征的内存成本。该项目不仅提供了高效的模型,还具有可媲美甚至超越同类方法的性能。

技术分析
Anchor DETR的核心创新在于其重新设计的对象查询策略,即利用锚点作为基础。通过在每个锚点上附加多模式,模型能够更准确地捕获图像中的复杂场景,适应同一区域内可能存在的多个目标。此外,提出的RCDA(Reduced Cross Attention)机制优化了Transformer架构,使其在处理高分辨率特征时保持高效,降低了计算负担。
应用场景
Anchor DETR适用于各种计算机视觉任务,尤其是目标检测领域。无论是实时监控、自动驾驶、图像分析或是医学影像识别,只要需要从复杂背景中精确检测和定位多个目标,这个库都能大展拳脚。由于其速度较快,性能优异,尤其适合对实时性要求高的应用环境。
项目特点
- 高性能:在ResNet-50后骨头上,仅需训练50个周期,Anchor DETR就能达到44.3的AP值,优于标准DETR的表现。
- 高效计算:与Deformable DETR相比,虽然FLOPs相似,但Anchor DETR的推理速度更快,达到16 FPS,且支持torchscript优化,速度进一步提升。
- 易用性:安装简单,只需安装必要依赖项并提供COCO数据集路径,即可进行训练和评估。
- 模型多样性:提供ResNet-50和ResNet-101两种版本的预训练模型,满足不同性能需求。
使用指南
要开始使用 Anchor DETR,首先克隆项目仓库,然后安装依赖包。使用torch.distributed.launch进行分布式训练或单GPU评估。详细步骤可在项目README中找到。
在研究或开发过程中,如遇到问题,请随时打开issue或直接联系作者wangyingming@megvii.com获取帮助。
引用本文研究时,请使用以下参考文献:
@inproceedings{wang2022anchor,
title={Anchor detr: Query design for transformer-based detector},
author={Wang, Yingming and Zhang, Xiangyu and Yang, Tong and Sun, Jian},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={3},
pages={2567--2575},
year={2022}
}
加入Anchor DETR的行列,体验Transformer检测器的新维度,让我们一起探索更加智能的目标检测技术!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.46 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
547
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
596
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
410
Ascend Extension for PyTorch
Python
87
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
123