领航Transformer检测器:Anchor DETR
2024-05-21 13:46:26作者:傅爽业Veleda
项目简介
欢迎来到Anchor DETR的世界!这是一个官方实现的Anchor DETR项目,它将锚点编码为DETR中的对象查询。通过对每个锚点附加多种模式,Anchor DETR解决了"一个区域,多个物体"的难题,并引入了注意力变种RCDA,以降低高分辨率特征的内存成本。该项目不仅提供了高效的模型,还具有可媲美甚至超越同类方法的性能。
技术分析
Anchor DETR的核心创新在于其重新设计的对象查询策略,即利用锚点作为基础。通过在每个锚点上附加多模式,模型能够更准确地捕获图像中的复杂场景,适应同一区域内可能存在的多个目标。此外,提出的RCDA(Reduced Cross Attention)机制优化了Transformer架构,使其在处理高分辨率特征时保持高效,降低了计算负担。
应用场景
Anchor DETR适用于各种计算机视觉任务,尤其是目标检测领域。无论是实时监控、自动驾驶、图像分析或是医学影像识别,只要需要从复杂背景中精确检测和定位多个目标,这个库都能大展拳脚。由于其速度较快,性能优异,尤其适合对实时性要求高的应用环境。
项目特点
- 高性能:在ResNet-50后骨头上,仅需训练50个周期,Anchor DETR就能达到44.3的AP值,优于标准DETR的表现。
- 高效计算:与Deformable DETR相比,虽然FLOPs相似,但Anchor DETR的推理速度更快,达到16 FPS,且支持torchscript优化,速度进一步提升。
- 易用性:安装简单,只需安装必要依赖项并提供COCO数据集路径,即可进行训练和评估。
- 模型多样性:提供ResNet-50和ResNet-101两种版本的预训练模型,满足不同性能需求。
使用指南
要开始使用 Anchor DETR,首先克隆项目仓库,然后安装依赖包。使用torch.distributed.launch
进行分布式训练或单GPU评估。详细步骤可在项目README中找到。
在研究或开发过程中,如遇到问题,请随时打开issue或直接联系作者wangyingming@megvii.com获取帮助。
引用本文研究时,请使用以下参考文献:
@inproceedings{wang2022anchor,
title={Anchor detr: Query design for transformer-based detector},
author={Wang, Yingming and Zhang, Xiangyu and Yang, Tong and Sun, Jian},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={3},
pages={2567--2575},
year={2022}
}
加入Anchor DETR的行列,体验Transformer检测器的新维度,让我们一起探索更加智能的目标检测技术!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析2 freeCodeCamp课程中屏幕放大器知识点优化分析3 freeCodeCamp课程页面空白问题的技术分析与解决方案4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析9 freeCodeCamp英语课程填空题提示缺失问题分析10 freeCodeCamp音乐播放器项目中的函数调用问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58