DAB-DETR 开源项目使用教程
1. 项目介绍
DAB-DETR(Dynamic Anchor Boxes are Better Queries for DETR)是一个基于Transformer的目标检测框架,由IDEA-Research团队开发。该项目在ICLR 2022上发表,旨在改进原始DETR(DEtection TRansformer)的性能和训练收敛速度。DAB-DETR通过使用动态锚框作为查询,显著提高了目标检测的准确性和效率。
2. 项目快速启动
2.1 环境准备
首先,确保你的环境中已经安装了Python 3.7.3、PyTorch 1.9.0和CUDA 11.1。你可以通过以下命令安装PyTorch和torchvision:
conda install -c pytorch pytorch torchvision
2.2 克隆项目
使用Git克隆DAB-DETR项目到本地:
git clone https://github.com/IDEA-Research/DAB-DETR.git
cd DAB-DETR
2.3 安装依赖
安装项目所需的依赖包:
pip install -r requirements.txt
2.4 编译CUDA操作符(可选)
如果你计划使用DAB-Deformable-DETR,需要手动编译可变形注意力操作符:
cd models/dab_deformable_detr/ops
python setup.py build install
2.5 数据准备
下载COCO 2017数据集,并按照以下结构组织数据:
COCODIR/
├── train2017/
├── val2017/
└── annotations/
├── instances_train2017.json
└── instances_val2017.json
2.6 运行示例
使用预训练模型进行推理和评估:
# 使用DAB-DETR进行推理
python main.py -m dab_detr \
--output_dir logs/DABDETR/R50 \
--batch_size 1 \
--coco_path /path/to/your/COCODIR \
--resume /path/to/our/checkpoint \
--eval
# 使用DAB-Deformable-DETR进行推理
python main.py -m dab_deformable_detr \
--output_dir logs/dab_deformable_detr/R50 \
--batch_size 2 \
--coco_path /path/to/your/COCODIR \
--resume /path/to/our/checkpoint \
--transformer_activation relu \
--eval
3. 应用案例和最佳实践
3.1 目标检测
DAB-DETR在MS-COCO数据集上的表现优异,尤其是在50个训练周期内,使用ResNet50-DC5作为骨干网络时,AP达到了45.7%。这表明DAB-DETR在目标检测任务中具有很高的实用价值。
3.2 模型优化
通过调整学习率、批量大小和训练周期等超参数,可以进一步优化DAB-DETR的性能。此外,使用多GPU并行训练可以显著缩短训练时间。
4. 典型生态项目
4.1 detrex
detrex是一个包含多种Transformer-based检测算法的工具箱,其中包括DAB-DETR。detrex提供了更好的性能和更丰富的功能,适合进一步研究和应用。
4.2 Mask DINO
Mask DINO是一个统一的目标检测和分割模型,结合了DAB-DETR的思想,在COCO实例分割、COCO全景分割和ADE20K语义分割任务中均取得了最佳结果。
通过以上步骤,你可以快速上手DAB-DETR项目,并在实际应用中取得良好的效果。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









