DAB-DETR 开源项目使用教程
1. 项目介绍
DAB-DETR(Dynamic Anchor Boxes are Better Queries for DETR)是一个基于Transformer的目标检测框架,由IDEA-Research团队开发。该项目在ICLR 2022上发表,旨在改进原始DETR(DEtection TRansformer)的性能和训练收敛速度。DAB-DETR通过使用动态锚框作为查询,显著提高了目标检测的准确性和效率。
2. 项目快速启动
2.1 环境准备
首先,确保你的环境中已经安装了Python 3.7.3、PyTorch 1.9.0和CUDA 11.1。你可以通过以下命令安装PyTorch和torchvision:
conda install -c pytorch pytorch torchvision
2.2 克隆项目
使用Git克隆DAB-DETR项目到本地:
git clone https://github.com/IDEA-Research/DAB-DETR.git
cd DAB-DETR
2.3 安装依赖
安装项目所需的依赖包:
pip install -r requirements.txt
2.4 编译CUDA操作符(可选)
如果你计划使用DAB-Deformable-DETR,需要手动编译可变形注意力操作符:
cd models/dab_deformable_detr/ops
python setup.py build install
2.5 数据准备
下载COCO 2017数据集,并按照以下结构组织数据:
COCODIR/
├── train2017/
├── val2017/
└── annotations/
├── instances_train2017.json
└── instances_val2017.json
2.6 运行示例
使用预训练模型进行推理和评估:
# 使用DAB-DETR进行推理
python main.py -m dab_detr \
--output_dir logs/DABDETR/R50 \
--batch_size 1 \
--coco_path /path/to/your/COCODIR \
--resume /path/to/our/checkpoint \
--eval
# 使用DAB-Deformable-DETR进行推理
python main.py -m dab_deformable_detr \
--output_dir logs/dab_deformable_detr/R50 \
--batch_size 2 \
--coco_path /path/to/your/COCODIR \
--resume /path/to/our/checkpoint \
--transformer_activation relu \
--eval
3. 应用案例和最佳实践
3.1 目标检测
DAB-DETR在MS-COCO数据集上的表现优异,尤其是在50个训练周期内,使用ResNet50-DC5作为骨干网络时,AP达到了45.7%。这表明DAB-DETR在目标检测任务中具有很高的实用价值。
3.2 模型优化
通过调整学习率、批量大小和训练周期等超参数,可以进一步优化DAB-DETR的性能。此外,使用多GPU并行训练可以显著缩短训练时间。
4. 典型生态项目
4.1 detrex
detrex是一个包含多种Transformer-based检测算法的工具箱,其中包括DAB-DETR。detrex提供了更好的性能和更丰富的功能,适合进一步研究和应用。
4.2 Mask DINO
Mask DINO是一个统一的目标检测和分割模型,结合了DAB-DETR的思想,在COCO实例分割、COCO全景分割和ADE20K语义分割任务中均取得了最佳结果。
通过以上步骤,你可以快速上手DAB-DETR项目,并在实际应用中取得良好的效果。
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109