首页
/ DAB-DETR 开源项目使用教程

DAB-DETR 开源项目使用教程

2024-09-25 06:37:49作者:傅爽业Veleda

1. 项目介绍

DAB-DETR(Dynamic Anchor Boxes are Better Queries for DETR)是一个基于Transformer的目标检测框架,由IDEA-Research团队开发。该项目在ICLR 2022上发表,旨在改进原始DETR(DEtection TRansformer)的性能和训练收敛速度。DAB-DETR通过使用动态锚框作为查询,显著提高了目标检测的准确性和效率。

2. 项目快速启动

2.1 环境准备

首先,确保你的环境中已经安装了Python 3.7.3、PyTorch 1.9.0和CUDA 11.1。你可以通过以下命令安装PyTorch和torchvision:

conda install -c pytorch pytorch torchvision

2.2 克隆项目

使用Git克隆DAB-DETR项目到本地:

git clone https://github.com/IDEA-Research/DAB-DETR.git
cd DAB-DETR

2.3 安装依赖

安装项目所需的依赖包:

pip install -r requirements.txt

2.4 编译CUDA操作符(可选)

如果你计划使用DAB-Deformable-DETR,需要手动编译可变形注意力操作符:

cd models/dab_deformable_detr/ops
python setup.py build install

2.5 数据准备

下载COCO 2017数据集,并按照以下结构组织数据:

COCODIR/
├── train2017/
├── val2017/
└── annotations/
    ├── instances_train2017.json
    └── instances_val2017.json

2.6 运行示例

使用预训练模型进行推理和评估:

# 使用DAB-DETR进行推理
python main.py -m dab_detr \
    --output_dir logs/DABDETR/R50 \
    --batch_size 1 \
    --coco_path /path/to/your/COCODIR \
    --resume /path/to/our/checkpoint \
    --eval

# 使用DAB-Deformable-DETR进行推理
python main.py -m dab_deformable_detr \
    --output_dir logs/dab_deformable_detr/R50 \
    --batch_size 2 \
    --coco_path /path/to/your/COCODIR \
    --resume /path/to/our/checkpoint \
    --transformer_activation relu \
    --eval

3. 应用案例和最佳实践

3.1 目标检测

DAB-DETR在MS-COCO数据集上的表现优异,尤其是在50个训练周期内,使用ResNet50-DC5作为骨干网络时,AP达到了45.7%。这表明DAB-DETR在目标检测任务中具有很高的实用价值。

3.2 模型优化

通过调整学习率、批量大小和训练周期等超参数,可以进一步优化DAB-DETR的性能。此外,使用多GPU并行训练可以显著缩短训练时间。

4. 典型生态项目

4.1 detrex

detrex是一个包含多种Transformer-based检测算法的工具箱,其中包括DAB-DETR。detrex提供了更好的性能和更丰富的功能,适合进一步研究和应用。

4.2 Mask DINO

Mask DINO是一个统一的目标检测和分割模型,结合了DAB-DETR的思想,在COCO实例分割、COCO全景分割和ADE20K语义分割任务中均取得了最佳结果。

通过以上步骤,你可以快速上手DAB-DETR项目,并在实际应用中取得良好的效果。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysqlxzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChatLangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admingin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vuesource-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madongmadong
基于Webman的权限管理系统
PHP
4
0
cool-admin-javacool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2