AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.11版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,旨在简化机器学习环境的部署过程。这些容器镜像已经过优化,包含了流行的深度学习框架及其依赖项,用户可以直接使用而无需自行配置复杂的运行环境。
近日,AWS发布了PyTorch Graviton EC2推理容器的新版本v1.11,该版本基于PyTorch 2.4.0框架构建,专为使用AWS Graviton处理器的EC2实例优化。Graviton处理器是AWS自主研发的基于ARM架构的处理器,相比传统x86架构处理器,在性价比方面具有显著优势。
核心特性与技术规格
本次发布的容器镜像采用Ubuntu 22.04作为基础操作系统,预装了Python 3.11环境,主要面向CPU推理场景。镜像中集成了PyTorch生态系统的关键组件:
-
核心框架:PyTorch 2.4.0+cpu版本,这是当前PyTorch的最新稳定版本,包含了多项性能优化和新特性。
-
配套工具:
- TorchServe 0.12.0:用于模型部署和服务化的工具
- TorchModelArchiver 0.12.0:模型打包工具
- TorchVision 0.19.0:计算机视觉相关扩展
- TorchAudio 2.4.0:音频处理相关扩展
-
科学计算库:
- NumPy 1.26.4:基础数值计算库
- SciPy 1.14.1:科学计算库
- OpenCV 4.10.0.84:计算机视觉库
-
开发工具:
- Cython 3.0.11:Python C扩展工具
- Ninja 1.11.1.1:构建系统
环境配置与依赖
该容器镜像已经预装了必要的系统依赖项,包括:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev等)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev等)
- 开发工具如Emacs编辑器
Python环境方面,除了上述核心库外,还包含了常用的工具包如:
- AWS CLI 1.35.20:用于与AWS服务交互
- Boto3 1.35.54:AWS SDK for Python
- Pillow 11.0.0:图像处理库
- Requests 2.32.3:HTTP请求库
使用场景与优势
这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:
-
成本敏感型推理服务:Graviton处理器相比传统x86实例可提供更高的性价比,特别适合大规模部署的推理服务。
-
边缘计算场景:ARM架构的低功耗特性使其在边缘设备上表现优异。
-
快速原型开发:预配置的环境可以大大减少环境搭建时间,让开发者专注于模型开发和优化。
-
标准化部署:使用容器化部署可以确保开发、测试和生产环境的一致性。
版本兼容性与选择建议
用户可以通过不同的标签来拉取适合自己需求的镜像版本。本次发布提供了多个标签别名,包括:
- 2.4-cpu-py311-ubuntu22.04-ec2-v1(通用标签)
- 2.4.0-cpu-py311-ec2(简化标签)
- 带具体时间戳的版本标签(用于精确版本控制)
对于生产环境,建议使用带具体版本号的标签以确保稳定性;对于开发和测试环境,可以使用通用标签以自动获取最新更新。
总结
AWS Deep Learning Containers的这次更新为使用Graviton处理器的PyTorch用户带来了最新的框架支持和优化。通过预配置的容器镜像,用户可以快速部署高效的推理服务,同时享受ARM架构带来的成本优势。对于已经在使用AWS生态的机器学习团队,这无疑是一个值得考虑的部署选项。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









