Apache Fury中Map性能优化实践与思考
2025-06-25 14:09:05作者:齐添朝
Apache Fury作为一个高性能序列化框架,其内部大量使用了Map结构来实现类序列化器分发和引用跟踪功能。随着Fury代码生成技术的应用,哈希查找操作的开销逐渐成为序列化过程中的性能瓶颈。本文将深入探讨Fury中Map性能优化的实践与思考。
背景与问题
在Fury的核心组件中,ClassResolver和MapRefResolver分别使用Map结构来管理类序列化器和对象引用。这些Map结构在序列化过程中会被频繁访问,其性能直接影响整体序列化效率。
ClassResolver默认使用0.25的加载因子,而MapRefResolver则使用0.51f的加载因子。这种差异源于对象图可能非常庞大,较小的加载因子会消耗更多内存,当Map变大时可能导致L1缓存未命中。
现有优化措施
Fury已经实施了一些Map性能优化措施:
- 移除哈希乘法运算:直接使用System.identityHashCode()与掩码进行位运算,简化了哈希计算过程。
- 合并操作:将put和get操作合并为putOrGet方法,减少哈希查找次数。
- 内联优化:控制方法体大小在325字节码以内,确保JVM能够进行方法内联。
性能对比实验
通过JMH基准测试对比了多种Map实现的性能表现:
- JDK标准实现:HashMap和IdentityHashMap
- 第三方优化实现:jdkgdxds的ObjectObjectMap、FastUtil对应Map类型和Koloboke 1.0.0的哈希Map
测试结果显示,在某些场景下,基于对象toString()结果哈希的实现性能更好,这得益于String及其hashCode的缓存机制。然而,这种优化依赖于Class.getName()的唯一性和缓存特性,其适用性存在限制。
创新尝试:Cuckoo哈希与FlipMap
实验性地引入了Cuckoo哈希算法,在理想情况下(无完全冲突的哈希码)展现出显著性能优势:
- populate操作:比JDK IdentityHashMap快2.5倍
- contains操作:快约40%
- copy和iterate操作:均有明显提升
基于此开发了FlipMap,它在正常情况下使用Cuckoo哈希,在检测到完全冲突的键时自动切换为线性探测。这种混合策略结合了两种算法的优点:
- Cuckoo哈希优势:低冲突率下的高效查找
- 线性探测后备:处理极端冲突情况的稳定性
进一步优化方向
- ClassValue探索:考虑利用ClassValue为每个Class实例缓存ID,可能完全避免基于Class的哈希表。但需评估其哈希查找开销是否真的更低。
- 内存布局优化:调整数据结构以改善缓存局部性
- 热点键特殊处理:为高频访问的键设计快速路径
实践建议
对于类似Fury的高性能系统,Map优化可考虑以下策略:
- 根据场景选择加载因子:小规模高频访问用低加载因子,大规模数据用适中加载因子
- 合并高频操作:如putOrGet减少哈希计算
- 考虑混合算法:如FlipMap结合不同哈希策略优点
- 严格性能测试:任何优化都需通过全面基准测试验证
通过持续优化,Fury在序列化性能上取得了显著提升,这些实践也为其他高性能Java系统提供了宝贵参考。未来,随着新硬件特性和JVM优化的出现,Map性能优化仍有许多探索空间。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671