Apache Fury中Map性能优化实践与思考
2025-06-25 14:56:59作者:齐添朝
Apache Fury作为一个高性能序列化框架,其内部大量使用了Map结构来实现类序列化器分发和引用跟踪功能。随着Fury代码生成技术的应用,哈希查找操作的开销逐渐成为序列化过程中的性能瓶颈。本文将深入探讨Fury中Map性能优化的实践与思考。
背景与问题
在Fury的核心组件中,ClassResolver和MapRefResolver分别使用Map结构来管理类序列化器和对象引用。这些Map结构在序列化过程中会被频繁访问,其性能直接影响整体序列化效率。
ClassResolver默认使用0.25的加载因子,而MapRefResolver则使用0.51f的加载因子。这种差异源于对象图可能非常庞大,较小的加载因子会消耗更多内存,当Map变大时可能导致L1缓存未命中。
现有优化措施
Fury已经实施了一些Map性能优化措施:
- 移除哈希乘法运算:直接使用System.identityHashCode()与掩码进行位运算,简化了哈希计算过程。
- 合并操作:将put和get操作合并为putOrGet方法,减少哈希查找次数。
- 内联优化:控制方法体大小在325字节码以内,确保JVM能够进行方法内联。
性能对比实验
通过JMH基准测试对比了多种Map实现的性能表现:
- JDK标准实现:HashMap和IdentityHashMap
- 第三方优化实现:jdkgdxds的ObjectObjectMap、FastUtil对应Map类型和Koloboke 1.0.0的哈希Map
测试结果显示,在某些场景下,基于对象toString()结果哈希的实现性能更好,这得益于String及其hashCode的缓存机制。然而,这种优化依赖于Class.getName()的唯一性和缓存特性,其适用性存在限制。
创新尝试:Cuckoo哈希与FlipMap
实验性地引入了Cuckoo哈希算法,在理想情况下(无完全冲突的哈希码)展现出显著性能优势:
- populate操作:比JDK IdentityHashMap快2.5倍
- contains操作:快约40%
- copy和iterate操作:均有明显提升
基于此开发了FlipMap,它在正常情况下使用Cuckoo哈希,在检测到完全冲突的键时自动切换为线性探测。这种混合策略结合了两种算法的优点:
- Cuckoo哈希优势:低冲突率下的高效查找
- 线性探测后备:处理极端冲突情况的稳定性
进一步优化方向
- ClassValue探索:考虑利用ClassValue为每个Class实例缓存ID,可能完全避免基于Class的哈希表。但需评估其哈希查找开销是否真的更低。
- 内存布局优化:调整数据结构以改善缓存局部性
- 热点键特殊处理:为高频访问的键设计快速路径
实践建议
对于类似Fury的高性能系统,Map优化可考虑以下策略:
- 根据场景选择加载因子:小规模高频访问用低加载因子,大规模数据用适中加载因子
- 合并高频操作:如putOrGet减少哈希计算
- 考虑混合算法:如FlipMap结合不同哈希策略优点
- 严格性能测试:任何优化都需通过全面基准测试验证
通过持续优化,Fury在序列化性能上取得了显著提升,这些实践也为其他高性能Java系统提供了宝贵参考。未来,随着新硬件特性和JVM优化的出现,Map性能优化仍有许多探索空间。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1