ChatGLM3微调过程中Evaluation阶段报错问题分析与解决方案
问题背景
在使用ChatGLM3进行模型微调的过程中,许多开发者在Evaluation阶段遇到了运行错误。这一问题主要出现在阿里云PAI-DSW环境中,使用A10显卡和特定版本的ModelScope环境时发生。错误表现为在运行到指定存储步数(如500步)时,程序无法正常执行Evaluation操作。
环境配置分析
典型的问题环境配置如下:
- 硬件环境:阿里云PAI-DSW,A10显卡
- 软件环境:ModelScope 1.15.0,基于PyTorch 2.3.0和TensorFlow 2.16.1
- Python版本:3.10
- CUDA版本:12.1
- 操作系统:Ubuntu 22.04
错误原因深度解析
经过技术分析,该问题主要由两个潜在因素导致:
-
Transformers版本兼容性问题:最新版本的Transformers库(高于4.40.0)与ChatGLM3的评估模块存在兼容性问题。这可能是由于API变更或内部实现逻辑调整导致的。
-
数据长度超限问题:当输入数据的token长度超过模型设置的最大长度限制(默认为500)时,系统会自动跳过这些数据。如果所有数据都被跳过,评估阶段就会因无有效数据而报错。
解决方案
针对上述问题原因,提供以下解决方案:
方案一:降低Transformers版本
这是最直接有效的解决方案:
pip install transformers==4.40.0
版本降级后,评估模块能够正常执行。这一方案适用于大多数遇到类似问题的场景。
方案二:调整最大token长度
如果怀疑是数据长度问题导致,可以修改配置文件中的max_token参数:
# 在configs/lora.yaml中增加或修改
max_length: 2048 # 根据实际数据长度调整
最佳实践建议
-
环境隔离:建议使用conda或venv创建独立的Python环境,避免版本冲突。
-
版本控制:在requirements.txt中明确指定关键库的版本号,特别是transformers和torch等核心依赖。
-
数据预处理:在微调前对数据进行长度分析和适当截断,确保不超过模型最大长度限制。
-
分步验证:可以先在小规模数据集上测试整个流程,确认无误后再进行完整训练。
技术原理延伸
ChatGLM3的评估阶段主要完成以下工作:
- 加载检查点模型
- 在验证集上计算指标(如准确率、困惑度等)
- 生成示例输出供人工评估
这一过程对模型加载和推理的稳定性要求较高,因此对底层库的版本较为敏感。Transformers 4.40.0是一个经过验证的稳定版本,能够很好地支持ChatGLM3的各项功能。
总结
ChatGLM3微调过程中的Evaluation报错问题,主要源于环境配置的版本兼容性。通过降低Transformers库版本至4.40.0,可以有效解决这一问题。同时,开发者也应该关注输入数据的长度限制,确保其在模型支持范围内。这些经验不仅适用于当前问题,对于其他类似的大模型微调任务也具有参考价值。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









