Optax项目中二阶优化方法的实现探讨
背景介绍
在深度学习优化领域,一阶优化方法如SGD、Adam等已经得到了广泛应用。然而,二阶优化方法如牛顿法、序列二次规划(SQP)等由于能够利用目标函数的曲率信息,理论上具有更快的收敛速度。本文将探讨在JAX生态下的Optax优化库中实现二阶优化方法的可能性与技术路线。
技术挑战
在Optax中实现二阶优化方法面临几个核心挑战:
-
接口设计:Optax当前的GradientTransformation接口主要针对一阶梯度设计,缺乏对Hessian矩阵或Hessian-向量积(HVP)的原生支持
-
计算效率:直接计算并存储完整的Hessian矩阵对于大规模深度学习模型来说计算和存储成本都过高
-
数值稳定性:Hessian矩阵可能不正定,导致优化方向不稳定
可行的实现方案
基于Optax现有的架构,可以考虑以下实现路径:
-
扩展接口设计:利用GradientTransformWithExtraArgs接口,将Hessian-向量积作为额外参数传入。这样优化器可以在不修改核心接口的情况下支持二阶方法
-
隐式Hessian计算:采用Hessian-free优化策略,通过有限差分或自动微分直接计算Hessian-向量积,避免显式计算完整的Hessian矩阵
-
近似二阶方法:实现如L-BFGS等拟牛顿法,通过历史梯度信息近似Hessian矩阵
具体实现建议
对于希望在Optax中实现牛顿法的开发者,可以遵循以下步骤:
- 定义一个计算Hessian-向量积的函数
- 创建自定义的GradientTransformation,在update函数中:
- 使用共轭梯度法等迭代方法求解牛顿方向
- 处理Hessian矩阵可能不正定的情况
- 实现适当的线搜索策略保证收敛性
替代方案
对于确定性优化问题,可以考虑使用专门为高阶优化设计的Optimistix库,它提供了更丰富的二阶优化算法实现。
未来展望
随着自动微分技术的发展和大规模线性求解器的优化,二阶优化方法在深度学习中的应用前景值得期待。Optax作为JAX生态中的核心优化库,未来可能会逐步引入对二阶方法的更完善支持。
开发者社区可以共同探索如何在保持接口简洁性的同时,为高阶优化方法提供足够的灵活性,这将是深度学习优化领域一个有价值的研究方向。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00