ChatGLM3单机多卡LoRA微调报错问题分析与解决
问题背景
在使用ChatGLM3进行LoRA微调时,用户遇到了单机多卡运行时的CUDA设备序号无效错误。具体表现为当尝试使用torchrun启动多进程训练时,系统抛出"RuntimeError: CUDA error: invalid device ordinal"错误。
环境配置分析
从问题描述中可以看到用户的环境配置如下:
- CUDA 12.1
- Transformers 4.38.1
- Python 3.11.8
- Linux CentOS 7.9操作系统
- 两张NVIDIA RTX 3090显卡(24GB显存)
问题原因
经过分析,该问题主要由以下几个因素导致:
-
设备数量不匹配:用户在torchrun命令中设置了
--nproc_per_node=8,但实际只有2张显卡。这个参数应该与实际GPU数量一致。 -
DeepSpeed配置问题:DeepSpeed的安装或配置可能存在问题,特别是Zero阶段2的配置可能不正确。
-
环境依赖不完整:虽然用户已经安装了主要依赖,但某些关键依赖如typer、nltk等需要额外安装。
解决方案
1. 正确设置GPU数量参数
将torchrun命令中的--nproc_per_node参数设置为实际GPU数量:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py data/AdvertiseGen/ THUDM/chatglm3-6b configs/lora.yaml --deepspeed ds_zero_2.json
2. 确保DeepSpeed正确安装
按照官方推荐方式安装DeepSpeed:
pip install deepspeed
并验证安装是否成功:
ds_report
3. 检查并完善环境依赖
确保所有必要的Python包都已安装:
pip install typer nltk sentencepiece transformers
4. 代码修改建议
对于finetune_hf.py中154行的修改是合理的,可以避免某些环境下的参数初始化问题:
default_factory = lambda: Seq2SeqTrainingArguments(output_dir='./output')
深入技术解析
CUDA设备序号无效的本质
"invalid device ordinal"错误通常发生在以下几种情况:
- 尝试访问不存在的GPU设备
- GPU设备索引超出范围
- CUDA驱动与运行时版本不匹配
- GPU设备未被正确初始化
在多卡训练场景下,torchrun会为每个进程分配一个GPU设备。当请求的设备数量超过实际可用数量时,就会出现此错误。
DeepSpeed Zero阶段2配置要点
使用DeepSpeed的Zero阶段2优化时,需要注意:
- 确保batch size适合多卡训练
- 检查梯度累积步数设置
- 验证优化器状态和梯度分片配置
- 监控显存使用情况,避免OOM
最佳实践建议
- 环境检查脚本:在运行训练前,建议先运行简单的CUDA设备检查脚本:
import torch
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"GPU数量: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
-
逐步验证:建议先使用单卡验证训练流程,再扩展到多卡。
-
日志监控:增加训练日志输出,特别是设备分配和显存使用情况。
-
版本兼容性:确保PyTorch、CUDA、DeepSpeed等关键组件的版本兼容性。
总结
ChatGLM3的LoRA微调在多卡环境下运行时,需要特别注意设备数量的正确配置和DeepSpeed环境的完整性。通过合理设置torchrun参数、完善环境依赖以及正确配置DeepSpeed,可以有效解决"invalid device ordinal"错误,实现高效的多卡训练。对于大规模模型微调,建议进一步研究梯度累积、混合精度训练等优化技术,以充分利用多GPU的计算能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00