ChatGLM3单机多卡LoRA微调报错问题分析与解决
问题背景
在使用ChatGLM3进行LoRA微调时,用户遇到了单机多卡运行时的CUDA设备序号无效错误。具体表现为当尝试使用torchrun启动多进程训练时,系统抛出"RuntimeError: CUDA error: invalid device ordinal"错误。
环境配置分析
从问题描述中可以看到用户的环境配置如下:
- CUDA 12.1
- Transformers 4.38.1
- Python 3.11.8
- Linux CentOS 7.9操作系统
- 两张NVIDIA RTX 3090显卡(24GB显存)
问题原因
经过分析,该问题主要由以下几个因素导致:
-
设备数量不匹配:用户在torchrun命令中设置了
--nproc_per_node=8,但实际只有2张显卡。这个参数应该与实际GPU数量一致。 -
DeepSpeed配置问题:DeepSpeed的安装或配置可能存在问题,特别是Zero阶段2的配置可能不正确。
-
环境依赖不完整:虽然用户已经安装了主要依赖,但某些关键依赖如typer、nltk等需要额外安装。
解决方案
1. 正确设置GPU数量参数
将torchrun命令中的--nproc_per_node参数设置为实际GPU数量:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py data/AdvertiseGen/ THUDM/chatglm3-6b configs/lora.yaml --deepspeed ds_zero_2.json
2. 确保DeepSpeed正确安装
按照官方推荐方式安装DeepSpeed:
pip install deepspeed
并验证安装是否成功:
ds_report
3. 检查并完善环境依赖
确保所有必要的Python包都已安装:
pip install typer nltk sentencepiece transformers
4. 代码修改建议
对于finetune_hf.py中154行的修改是合理的,可以避免某些环境下的参数初始化问题:
default_factory = lambda: Seq2SeqTrainingArguments(output_dir='./output')
深入技术解析
CUDA设备序号无效的本质
"invalid device ordinal"错误通常发生在以下几种情况:
- 尝试访问不存在的GPU设备
- GPU设备索引超出范围
- CUDA驱动与运行时版本不匹配
- GPU设备未被正确初始化
在多卡训练场景下,torchrun会为每个进程分配一个GPU设备。当请求的设备数量超过实际可用数量时,就会出现此错误。
DeepSpeed Zero阶段2配置要点
使用DeepSpeed的Zero阶段2优化时,需要注意:
- 确保batch size适合多卡训练
- 检查梯度累积步数设置
- 验证优化器状态和梯度分片配置
- 监控显存使用情况,避免OOM
最佳实践建议
- 环境检查脚本:在运行训练前,建议先运行简单的CUDA设备检查脚本:
import torch
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"GPU数量: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
-
逐步验证:建议先使用单卡验证训练流程,再扩展到多卡。
-
日志监控:增加训练日志输出,特别是设备分配和显存使用情况。
-
版本兼容性:确保PyTorch、CUDA、DeepSpeed等关键组件的版本兼容性。
总结
ChatGLM3的LoRA微调在多卡环境下运行时,需要特别注意设备数量的正确配置和DeepSpeed环境的完整性。通过合理设置torchrun参数、完善环境依赖以及正确配置DeepSpeed,可以有效解决"invalid device ordinal"错误,实现高效的多卡训练。对于大规模模型微调,建议进一步研究梯度累积、混合精度训练等优化技术,以充分利用多GPU的计算能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00