ChatGLM3单机多卡LoRA微调报错问题分析与解决
问题背景
在使用ChatGLM3进行LoRA微调时,用户遇到了单机多卡运行时的CUDA设备序号无效错误。具体表现为当尝试使用torchrun启动多进程训练时,系统抛出"RuntimeError: CUDA error: invalid device ordinal"错误。
环境配置分析
从问题描述中可以看到用户的环境配置如下:
- CUDA 12.1
 - Transformers 4.38.1
 - Python 3.11.8
 - Linux CentOS 7.9操作系统
 - 两张NVIDIA RTX 3090显卡(24GB显存)
 
问题原因
经过分析,该问题主要由以下几个因素导致:
- 
设备数量不匹配:用户在torchrun命令中设置了
--nproc_per_node=8,但实际只有2张显卡。这个参数应该与实际GPU数量一致。 - 
DeepSpeed配置问题:DeepSpeed的安装或配置可能存在问题,特别是Zero阶段2的配置可能不正确。
 - 
环境依赖不完整:虽然用户已经安装了主要依赖,但某些关键依赖如typer、nltk等需要额外安装。
 
解决方案
1. 正确设置GPU数量参数
将torchrun命令中的--nproc_per_node参数设置为实际GPU数量:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py data/AdvertiseGen/ THUDM/chatglm3-6b configs/lora.yaml --deepspeed ds_zero_2.json
2. 确保DeepSpeed正确安装
按照官方推荐方式安装DeepSpeed:
pip install deepspeed
并验证安装是否成功:
ds_report
3. 检查并完善环境依赖
确保所有必要的Python包都已安装:
pip install typer nltk sentencepiece transformers
4. 代码修改建议
对于finetune_hf.py中154行的修改是合理的,可以避免某些环境下的参数初始化问题:
default_factory = lambda: Seq2SeqTrainingArguments(output_dir='./output')
深入技术解析
CUDA设备序号无效的本质
"invalid device ordinal"错误通常发生在以下几种情况:
- 尝试访问不存在的GPU设备
 - GPU设备索引超出范围
 - CUDA驱动与运行时版本不匹配
 - GPU设备未被正确初始化
 
在多卡训练场景下,torchrun会为每个进程分配一个GPU设备。当请求的设备数量超过实际可用数量时,就会出现此错误。
DeepSpeed Zero阶段2配置要点
使用DeepSpeed的Zero阶段2优化时,需要注意:
- 确保batch size适合多卡训练
 - 检查梯度累积步数设置
 - 验证优化器状态和梯度分片配置
 - 监控显存使用情况,避免OOM
 
最佳实践建议
- 环境检查脚本:在运行训练前,建议先运行简单的CUDA设备检查脚本:
 
import torch
print(f"CUDA可用: {torch.cuda.is_available()}")
print(f"GPU数量: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
    print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
- 
逐步验证:建议先使用单卡验证训练流程,再扩展到多卡。
 - 
日志监控:增加训练日志输出,特别是设备分配和显存使用情况。
 - 
版本兼容性:确保PyTorch、CUDA、DeepSpeed等关键组件的版本兼容性。
 
总结
ChatGLM3的LoRA微调在多卡环境下运行时,需要特别注意设备数量的正确配置和DeepSpeed环境的完整性。通过合理设置torchrun参数、完善环境依赖以及正确配置DeepSpeed,可以有效解决"invalid device ordinal"错误,实现高效的多卡训练。对于大规模模型微调,建议进一步研究梯度累积、混合精度训练等优化技术,以充分利用多GPU的计算能力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00