Ragbits项目中的Prompt使用指南:从基础到高级技巧
2025-06-05 21:10:34作者:侯霆垣
引言
在现代AI应用开发中,Prompt(提示词)的设计与使用是构建高效AI系统的关键环节。Ragbits项目提供了一套完善的Prompt管理框架,使开发者能够轻松定义、配置和使用Prompt。本文将全面介绍如何在Ragbits项目中高效使用Prompt功能。
基础Prompt定义
静态Prompt创建
静态Prompt是最简单的Prompt形式,不需要输入数据模型。在Ragbits中,我们可以通过继承Prompt基类来定义静态Prompt:
from ragbits.core.prompt import Prompt
class JokePrompt(Prompt):
"""
用于生成笑话的Prompt
"""
system_prompt = "你是一个笑话生成器,生成的笑话应该有趣且不具冒犯性"
user_prompt = "给我讲个笑话"
使用这个Prompt非常简单:
from ragbits.core.llms.litellm import LiteLLM
llm = LiteLLM("gpt-4")
joke = await llm.generate(JokePrompt())
print(joke)
带输入模型的Prompt
更常见的情况是,我们需要根据不同的输入生成响应。Ragbits支持使用Pydantic模型定义输入数据结构:
from pydantic import BaseModel
class QueryWithContext(BaseModel):
query: str
context: list[str]
class RAGPrompt(Prompt[QueryWithContext]):
system_prompt = "你是一个有帮助的助手,根据提供的上下文回答问题"
user_prompt = """
问题:{{ query }}
上下文:
{% for item in context %}
{{ item }}
{% endfor %}
"""
使用时传入符合模型的数据:
query = "最近两届世界杯冠军是谁?"
context = ["今天是2017年11月", "德国赢得了2014年世界杯", "西班牙赢得了2010年世界杯"]
prompt = RAGPrompt(QueryWithContext(query=query, context=context))
response = await llm.generate(prompt)
高级Prompt配置
结构化输出配置
Ragbits支持定义输出数据结构,这对于构建需要严格输出格式的应用非常有用:
class WorldCupWinners(BaseModel):
last: str
previous: str
class StructuredRAGPrompt(Prompt[QueryWithContext, WorldCupWinners]):
# ...其他定义与之前相同...
使用时需要确保LLM支持结构化输出:
llm = LiteLLM(use_structured_output=True)
response = await llm.generate(prompt) # 返回WorldCupWinners实例
简单类型输出
对于简单的输出类型(如布尔值、整数等),Ragbits提供了内置解析器:
class BooleanPrompt(Prompt[RoleInput, bool]):
user_prompt = "你是{{ role }}吗?只回答'是'或'否'"
自定义输出解析器
当内置解析器不能满足需求时,可以自定义解析逻辑:
class CustomIntPrompt(Prompt[ItemInput, int]):
@staticmethod
def response_parser(response: str) -> int:
numbers = re.findall(r"\d+", response)
return int(numbers[0]) if numbers else 0
最佳实践
-
Prompt设计原则:
- 明确系统角色(system_prompt)
- 清晰表达用户需求(user_prompt)
- 使用模板语法动态插入变量
-
错误处理:
- 捕获
ResponseParsingError处理解析失败 - 为关键操作添加类型检查
- 捕获
-
性能优化:
- 复用Prompt实例
- 批量处理相似请求
总结
Ragbits的Prompt系统提供了从简单到复杂的全方位支持。通过本文介绍的技术,开发者可以:
- 创建静态或动态Prompt
- 定义严格的输入输出数据结构
- 实现自定义解析逻辑
- 构建健壮的AI应用
掌握这些Prompt技术将大大提升你在Ragbits项目中开发AI应用的能力和效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100