Ragbits项目中的Prompt使用指南:从基础到高级技巧
2025-06-05 19:52:06作者:侯霆垣
引言
在现代AI应用开发中,Prompt(提示词)的设计与使用是构建高效AI系统的关键环节。Ragbits项目提供了一套完善的Prompt管理框架,使开发者能够轻松定义、配置和使用Prompt。本文将全面介绍如何在Ragbits项目中高效使用Prompt功能。
基础Prompt定义
静态Prompt创建
静态Prompt是最简单的Prompt形式,不需要输入数据模型。在Ragbits中,我们可以通过继承Prompt基类来定义静态Prompt:
from ragbits.core.prompt import Prompt
class JokePrompt(Prompt):
"""
用于生成笑话的Prompt
"""
system_prompt = "你是一个笑话生成器,生成的笑话应该有趣且不具冒犯性"
user_prompt = "给我讲个笑话"
使用这个Prompt非常简单:
from ragbits.core.llms.litellm import LiteLLM
llm = LiteLLM("gpt-4")
joke = await llm.generate(JokePrompt())
print(joke)
带输入模型的Prompt
更常见的情况是,我们需要根据不同的输入生成响应。Ragbits支持使用Pydantic模型定义输入数据结构:
from pydantic import BaseModel
class QueryWithContext(BaseModel):
query: str
context: list[str]
class RAGPrompt(Prompt[QueryWithContext]):
system_prompt = "你是一个有帮助的助手,根据提供的上下文回答问题"
user_prompt = """
问题:{{ query }}
上下文:
{% for item in context %}
{{ item }}
{% endfor %}
"""
使用时传入符合模型的数据:
query = "最近两届世界杯冠军是谁?"
context = ["今天是2017年11月", "德国赢得了2014年世界杯", "西班牙赢得了2010年世界杯"]
prompt = RAGPrompt(QueryWithContext(query=query, context=context))
response = await llm.generate(prompt)
高级Prompt配置
结构化输出配置
Ragbits支持定义输出数据结构,这对于构建需要严格输出格式的应用非常有用:
class WorldCupWinners(BaseModel):
last: str
previous: str
class StructuredRAGPrompt(Prompt[QueryWithContext, WorldCupWinners]):
# ...其他定义与之前相同...
使用时需要确保LLM支持结构化输出:
llm = LiteLLM(use_structured_output=True)
response = await llm.generate(prompt) # 返回WorldCupWinners实例
简单类型输出
对于简单的输出类型(如布尔值、整数等),Ragbits提供了内置解析器:
class BooleanPrompt(Prompt[RoleInput, bool]):
user_prompt = "你是{{ role }}吗?只回答'是'或'否'"
自定义输出解析器
当内置解析器不能满足需求时,可以自定义解析逻辑:
class CustomIntPrompt(Prompt[ItemInput, int]):
@staticmethod
def response_parser(response: str) -> int:
numbers = re.findall(r"\d+", response)
return int(numbers[0]) if numbers else 0
最佳实践
-
Prompt设计原则:
- 明确系统角色(system_prompt)
- 清晰表达用户需求(user_prompt)
- 使用模板语法动态插入变量
-
错误处理:
- 捕获
ResponseParsingError处理解析失败 - 为关键操作添加类型检查
- 捕获
-
性能优化:
- 复用Prompt实例
- 批量处理相似请求
总结
Ragbits的Prompt系统提供了从简单到复杂的全方位支持。通过本文介绍的技术,开发者可以:
- 创建静态或动态Prompt
- 定义严格的输入输出数据结构
- 实现自定义解析逻辑
- 构建健壮的AI应用
掌握这些Prompt技术将大大提升你在Ragbits项目中开发AI应用的能力和效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19