Stan 开源项目使用教程
2024-09-19 19:24:58作者:魏侃纯Zoe
1. 项目的目录结构及介绍
Stan 项目的目录结构如下:
stan/
├── LICENSE
├── README.md
├── src/
│ ├── stan/
│ │ ├── common/
│ │ ├── io/
│ │ ├── math/
│ │ ├── model/
│ │ ├── services/
│ │ ├── version.hpp
│ │ └── ...
│ ├── cmdstan/
│ │ ├── makefile
│ │ ├── makefile.windows
│ │ ├── makefile.standalone
│ │ └── ...
│ └── ...
├── examples/
│ ├── bayesian_data_analysis/
│ ├── bayesian_hierarchical_linear_regression/
│ ├── bayesian_neural_network/
│ └── ...
├── doc/
│ ├── cmdstan_guide.pdf
│ ├── stan-reference-2.26.0.pdf
│ └── ...
└── ...
目录结构介绍
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和基本使用说明。
- src/: 项目的源代码目录,包含了 Stan 的核心代码。
- stan/: Stan 的核心代码,包括各种模块如
common,io,math,model等。 - cmdstan/: 命令行工具的源代码,包括 Makefile 和其他构建文件。
- stan/: Stan 的核心代码,包括各种模块如
- examples/: 包含多个示例项目,展示了如何使用 Stan 进行统计建模和数据分析。
- doc/: 包含项目的文档,如 CmdStan 的使用指南和 Stan 的参考手册。
2. 项目的启动文件介绍
Stan 项目的主要启动文件位于 src/cmdstan/ 目录下。以下是一些关键的启动文件:
- makefile: 用于构建 CmdStan 的 Makefile。
- makefile.windows: 适用于 Windows 平台的 Makefile。
- makefile.standalone: 用于独立构建的 Makefile。
启动步骤
-
克隆项目: 首先,克隆 Stan 项目到本地。
git clone https://github.com/stan-dev/stan.git -
进入项目目录: 进入项目目录。
cd stan/src/cmdstan -
构建项目: 使用 Makefile 构建项目。
make build -
运行示例: 构建完成后,可以运行示例项目来验证安装是否成功。
make examples/bernoulli/bernoulli ./examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.json
3. 项目的配置文件介绍
Stan 项目的配置文件主要用于定义模型的参数和数据输入。以下是一些常见的配置文件:
- .stan: Stan 模型的定义文件,包含模型的参数、数据和生成量。
- .data.json: 数据文件,通常以 JSON 格式存储,用于输入模型的数据。
配置文件示例
模型定义文件 (bernoulli.stan)
data {
int<lower=0> N;
int<lower=0,upper=1> y[N];
}
parameters {
real<lower=0,upper=1> theta;
}
model {
theta ~ beta(1,1);
y ~ bernoulli(theta);
}
数据文件 (bernoulli.data.json)
{
"N": 10,
"y": [0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
}
配置文件的使用
- 编写模型文件: 根据需求编写
.stan文件,定义模型的参数和数据。 - 准备数据文件: 将数据以 JSON 格式存储在
.data.json文件中。 - 运行模型: 使用 CmdStan 运行模型,并指定数据文件。
./examples/bernoulli/bernoulli sample data file=examples/bernoulli/bernoulli.data.json
通过以上步骤,您可以成功配置和运行 Stan 项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249